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We present SpEQ, a quick and correct strategy for detecting semantics in sparse codes and enabling automatic
translation to high-performance library calls or domain-specific languages (DSLs). When sparse linear algebra
codes contain implicit preconditions about how data is stored that hamper direct translation, SpEQ identifies
the high-level computation along with storage details and related preconditions. A run-time check guards the
translation and ensures that required preconditions are met.

We implement SpEQ using the LLVM framework, the Z3 solver, and egglog library [17, 28, 56] and correctly
translate sparse linear algebra codes into two high-performance libraries, NVIDIA cuSPARSE and Intel MKL,
and OpenMP (OMP) [6, 12, 36]. We evaluate SpEQ on ten diverse benchmarks against two state-of-the-art
translation tools. SpEQ achieves geometric mean speedups of 3.25×, 5.09×, and 8.04× on OpenMP, MKL, and
cuSPARSE backends, respectively. SpEQ is the only tool that can guarantee the correct translation of sparse
computations.

CCS Concepts: • Software and its engineering → Software verification and validation; Translator writing
systems and compiler generators.

Additional Key Words and Phrases: Program Analysis, Verification, Equivalence Checking, Equality Saturation

1 INTRODUCTION
Optimized libraries and domain-specific languages (DSLs) enable high performance for a diverse
range of applications. By focusing on a specific domain or computation, libraries and DSLs safely
apply aggressive optimizations that a general-purpose compiler cannot. Ideally, a user provided
program should be automatically translated to a desired library call or DSL to take advantage
of such optimizations. However, programmers can write any number of implementations for
the same computation, making syntax or structure-directed translation fragile. Codes also often
have implicit preconditions (assumptions about their input data) that must be derived for a correct
translation. In this paper, we focus on detecting preconditions for sparse linear algebra computations,
which operate on data stored in compressed tensors. Because sparse codes may have many
implementations and complicated preconditions due to compressed tensors, it is difficult to detect
their semantics for the purpose of safe translation.

There are two main strategies for detecting code semantics: idiom matching and verified lifting.
Idiom matching searches the user program for specific patterns that express a computation, called
idioms, and replaces them with the desired library call [4, 15, 21]. While idiom matching has a
low overhead, creating expressive and correct idioms for different computations requires expert
knowledge. Instead of searching for specific patterns, verified lifting searches the space of all
programs in a target DSL or library until an equivalent program is found [2, 3, 10, 24]. While the
search can be guided through a user-provided grammar, it requires expert knowledge to derive and
is often highly specific to the user program and target domain. Additionally, proving equivalence
becomes expensive on programs with unbounded loops, as each loop requires an inductive proof
known as an invariant. Finally, both idiom matching and verified lifting cannot derive preconditions
from input code, leaving sparse codes out of scope.
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This work introduces SpEQ (Translation of Sparse Codes using Equivalences), a program analysis
tool that detects the preconditions of sparse linear algebra codes and then safely replaces the input
code with high-performance library calls. SpEQ combines simulation techniques with equality
saturation to first identify preconditions for sparse codes and then correctly detect the code’s
semantics. Given a user input code 𝑓 in LLVM Intermediate Representation (IR) [28], SpEQ detects
any storage formats used and their relevant preconditions. SpEQ uses knowledge of storage formats
to construct a dense version of the input code (without preconditions), 𝑓 ′, and a relation 𝑅 between
both versions 𝑓 and 𝑓 ′. By using stuttering simulation to prove 𝑓 and 𝑓 ′ are equivalent under 𝑅,
SpEQ now has a precondition-free program 𝑓 ′. Next, SpEQ uses equality saturation to match 𝑓 ′ with
a collection of code semantics. The code semantics are described through reference implementations
of a computation, given as regular executable code. Any language with an LLVM IR frontend, such
as C/C++, Fortran, or Rust, is acceptable. During an offline phase before compilation, SpEQ abstracts
every reference implementation into a rewrite rule. The goal of equality saturation is to rewrite
the input program 𝑓 ′ as a function call to a reference implementation. Once the semantics of 𝑓 ′
are matched to known reference implementations, a backend uses this information to generate a
library call or DSL code. Finally, SpEQ generates an executable run-time check for each detected
storage format that guards the translated 𝑓 ′ to ensure the storage format’s preconditions are met
at run-time.

We present a lightweight strategy for detecting possible storage formats used in a sparse input
program. Then, we implement SpEQ using the LLVM framework, Z3 SMT solver, and egglog
equality saturation library [17, 28, 56]. From a diverse set of benchmarks, SpEQ correctly lifts
Sparse Matrix Vector multiplication (SpMV), General Matrix Multiply (GEMM), histograms, and
reductions. We implement backends for OpenMP [6], NVIDIA cuSPARSE [12], and Intel MKL [36].

The contributions of this paper are:

• A strategy for (1) detecting storage formats used in sparse linear algebra kernels, and (2)
generating run-time checks to verify that storage format preconditions are satisfied.

• A method for applying equality saturation to LLVM IR, along with a generic set of rewrite
rules, that enable code semantics to be matched quickly and correctly.

• An implementation of SpEQ with three example backends.

2 RUNNING EXAMPLE
In the running example shown in Figure 1, the input to SpEQ is a code implementing sparse matrix-
vector multiplication (SpMV) in the compressed sparse row (CSR) storage format. CSR is composed
of three arrays: a and col arrays store the nonzero values and column indices respectively, and
the row array stores the starting point of each row in the a and col arrays. As shown in Figure 1a,
two for-loops are typically used to implement SpMV based on CSR. The inner loop computes a
dot-product for one specific row, and the outer loop iterates over all rows. Consider the scenarios
where the row array elements are not (non-strictly) increasing, or the col array elements are
not unique; the resulting computation is no longer an SpMV, and should not be replaced with
an SpMV library call. The properties that elements of row should be increasing (monotonicity),
and that elements of col should be unique column indices in a row (periodic monotonicity), are
preconditions of the CSR storage format and well-studied in prior works [11, 53]. After detecting
that the example code is using the CSR format, SpEQ generates a run-time check (shown in Figure
1d) to guard the running example code and guarantee its preconditions are met. In this example,
SpEQ translates the example code into a series of NVIDIA cuSPARSE library calls that perform
SpMV on the GPU [12], shown in Figure 1f.
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Fig. 1. An example of SpEQ translating a sparse-matrix vector multiplication into a cuSPARSE library call. In

step one, SpEQ detects that the example input code (1a) may use compressed-sparse row (CSR) format to

represent a sparse matrix (Section 4.1.1). Under this assumption, SpEQ transforms the sparse representation

to dense (1c). To ensure the transformation is correct, both codes are translated to transition systems with a

simulation relation (red dashed lines) between them (1b). SpEQ verifies that the two systems are equivalent

by proving the relation is a stuttering simulation (Section 4). During step two, SpEQ converts the affine code

into a functional IR and adds it to an e-graph. Step three performs equality saturation to find reference

implementations (provided during an offline phase) that are equivalent to the input code (Section 5). In this

example, the input code can be rewritten to a GEMV reference implementation, with a function signature

shown in the yellow box. By rewriting the transformed input code into a GEMV call, the correct arguments for

m, n, a, etc., are extracted automatically, along with parameters that do not appear in the input code such as

alpha and beta. In step four, an example cuSPARSE backend module takes the GEMV and CSR information

as input to generate an SpMV library call (1e). SpEQ uses the relation from step one to automatically generate

a run-time check (1d) that verifies all input data assumptions (e.g, CSR) are satisfied (Section 4.5). Otherwise,

the original input code is executed.

➊ In step one, SpEQ identifies possible sparse storage formats through a static program analysis
(Section 4.1.1). SpEQ uses the results of static analysis to propose that (row,col,a) in Figure 1a
represent a sparse matrix in CSR format, with p and q being dense vectors. Based on this assumption,
SpEQ constructs a dense implementation of the input code (Section 4.1.2), shown in Figure 1c, along
with a relation between the sparse and dense transition systems, shown in 1b.

Figure 1b shows two transition systems; on the left side are two iterations 𝑠, 𝑡 of the inner
loop in Figure 1a, and on the right are three iterations 𝑢, 𝑣,𝑤 of the inner loop in Figure 1c. The
relation between the two systems is shown as a red dashed line. Both systems are processing three
consecutive elements 𝐴𝑖 𝑗 , 0, 𝐴𝑖 𝑗+1 of the sparse input matrix. The left-hand side of Figure 1b shows
how the loop in Figure 1a progresses from state 𝑠 → 𝑡 , skipping the zero element between 𝐴𝑖 𝑗

and 𝐴𝑖 𝑗+1. On the right-hand side, states 𝑢 → 𝑣 → 𝑤 process elements 𝐴𝑖 𝑗 , 0, 𝐴𝑖 𝑗+1, respectively,
without skipping the zero element. If A[j*m+k2] == 0 at state 𝑣 , then states 𝑣 and 𝑠 are equivalent,
shown by the relation between systems (red dashed line). The equivalence check based on this
relation only succeeds when certain input data properties are satisfied. For example, two properties
are required for this equivalence check to succeed: values in row must increase (monotonicity), and
values in col must strictly increase in each row (periodic monotonicity). These properties relate
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to the CSR storage format per [11, 53]. If the equivalence check succeeds, SpEQ knows that the
correct storage format was identified during static analysis and generates a run-time check for the
format’s preconditions (Figure 1d).

➋ During step two, a functional IR (FIR) form of the transformed input code (Section 3) is added
to an e-graph to search for equivalences with different known computations. The functional IR is
important for encoding properties that are difficult to express in LLVM IR, such as multiple memory
versions. Inside the functional IR, loops are represented as the fold operator, which takes four
inputs:

⟨𝑟1, . . . , 𝑟𝑛⟩ = fold ⟨𝑎1, . . . , 𝑎𝑛⟩ (λ ⟨𝑝1, . . . , 𝑝𝑛⟩ iv. body) lb ub

Where ⟨𝑎1, . . . , 𝑎𝑛⟩ are the initial values for ⟨𝑝1, . . . , 𝑝𝑛⟩, respectively; the second argument, com-
bining function, is the loop body with input variables ⟨𝑝1, . . . , 𝑝𝑛⟩; and final two arguments are the
iteration domain for induction variable iv. The combining function is executed 𝑢𝑏 − 𝑙𝑏 times, then
the current values of ⟨𝑝1, . . . , 𝑝𝑛⟩ are returned as ⟨𝑟1, . . . , 𝑟𝑛⟩, respectively. Figure 1e shows the loop
nest in Figure 1c in FIR. For example, the outer loop body stores a value sum2 to q[j] and returns a
new version of q, represented by the store node in Figure 1e. This new version of q is used as
input to the next execution of the loop body. The value sum2 is generated by the inner loop and
represented by a second fold function. The input code’s functional representation is added to the
e-graph in preparation for the equality saturation phase.

➌ In step three, SpEQ uses equality saturation to search for equivalences between the input code
and a collection of reference implementations. GEMV is one such reference implementation in this
example (Figure 9a). During an offline phase before compilation, SpEQ transforms all reference
implementations into the functional IR and abstracts them into a rewrite rule (Section 5). In addition
to rewrite rules derived from reference implementations, SpEQ has a set of generic rewrite rules
for common code transformations in the functional IR, such as loop fission/fusion/interchange and
sinking/hoisting. If the input code can be transformed to match a reference implementation through
a series of rewrite rule applications, it is equivalent to that reference implementation (shown in the
blue box). The correct arguments for a call to the reference implementation are extracted through
the rewriting process. The result of step three is (1) a list of computations that are equivalent to the
input code, and (2) the values from the input code that should be provided as arguments to the
computations.

➍ In the final step, a separate backend module uses the output from step three and the sparse
storage information to generate library calls or DSL code. This example shows the cuSPARSE
backend, which generates calls to the cuSPARSE library (Figure 1f). From step three, the high-level
computation of the input code is recognized as GEMV. However, the dense matrix A is symbolic;
the original input code has the sparse matrix represented by (row, col, a) as input. Based
on this information, the cuSPARSE backend first initializes the sparse matrix through a call to
cusparseCreateCsr, guarded by the run-time check. The sparse matrix input argument a to GEMV
also uniquely identifies the computation as SpMV. Therefore, the cuSPARSE backend generates the
relevant library call to cusparseSpMV.

3 LLVM IR TO FUNCTIONAL IR
This section presents the first phase of SpEQ’s pipeline, which converts LLMV IR to a Functional
IR (FIR) to enable the stuttering simulation and equality saturation steps. To support multiple
languages such as C/C++ and Fortran, SpEQ takes LLVM IR [28] as input. However, encoding LLVM
IR directly as a transition system and in an e-graph is challenging due to how store instructions
and control flow are represented. As shown in Figure 1, we want store and branch instructions to
represent a value; store instructions return the updated array, and branch instructions return the
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long int fn(int *a, long int n) {
long int i;
for (i = 0; i < n; ++i) // for.body

if (a[i])
a[i] = 0;

return i;
}

(a) Example input code.

(b) Control flow graph of the loop in 2a.

%for.body = 𝛌 ptr %a, i64 %i.02 .
%arrayidx = getelementptr i32, ptr %a, i64 %i.02
%0 = load i32, ptr %arrayidx
%tobool.not = icmp eq i32 %0, 0
%a.1 = store i32 0, ptr %arrayidx
%a.2 = if %tobool.not then %a.1 else %a
%inc = add i64 %i.02, 1

(%a.2, %inc) = fold (ptr %a) %for.body Range(i64 0, i64 %n)

(c) The loop in Figure 2a in FIR.

Fig. 2. (2a) An example input code with a conditional store to a[i]. (2b) The example input code in LLVM IR,

with MemorySSA analysis (red text). (2c) The example input code in FIR.

chosen control path. However, in LLVM IR, both store and branch instructions are considered to
return no value (Figure 2b). Adding direct support inside LLVM for special memory semantics and
branch instructions is a significant engineering effort. Instead, we propose FIR to augment LLVM
IR with additional information for implementing the equivalence check and equality saturation
phases.

3.1 Store Instructions
SpEQ associates a register with each store instruction so that different memory versions are
represented explicitly as values. The register names are determined by LLVM’s MemorySSA
analysis [1], which provides a static single-assignment (SSA) form of memory (shown in Figure 2b
in red). However, MemorySSA deliberately provides a coarse-grain heap model, where each store
updates a single shared heap. SpEQ uses a fine-grain heap model, where each pointer is assumed to
address non-overlapping memory regions (no aliasing). The compiler generates a no-alias check to
ensure pointers do not alias at run-time.
Figure 2b shows the control-flow graph (CFG) from input program 2a. The loop conditionally

stores a 0 to a[i], shown in the if.then block. The analysis from MemorySSA, shown in red,
represents the memory update as a MemoryDef that creates heap version 1 from heap version 3.
Rather than an update to the entire heap, SpEQ considers this an update to the separate array a.
Therefore, the value of the store instruction is assigned to register %a.1, as shown in Figure 2c.

3.2 Control Flow
Our goal is to represent branching control-flow in LLVM IR as a value of the form if 𝑐 then 𝑎 else𝑏.
If 𝑐 is true then the expression has the value 𝑎, otherwise it has the value 𝑏. In LLVM IR, 𝑎 and 𝑏 are
not represented directly in the branch instruction but in phi and MemoryPhi instructions where
control-paths merge. Figure 2b shows a branch instruction in for.body that creates two paths to
for.inc and if.then. The path along if.thenmodifies a, while the other does not. When the two
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paths merge at for.inc, the MemoryPhi instruction chooses the proper value from its predecessors.
In this paper we refer to both phi and MemoryPhi instructions as phi nodes.
To associate phi nodes with the correct branch condition, SpEQ uses the dominator tree. The

dominator tree is a common compiler analysis used in many scenarios [13, 43]. A block 𝑌 dominates
block 𝑋 if every path from the entry block to 𝑋 must pass through 𝑌 . For example, for.body
dominates for.inc and if.then (Figure 2b). Consider a phi node in a block 𝐶 with two incoming
values from blocks 𝐵1 and 𝐵2, respectively. There must be some block 𝐴 with a branch instruction
that created the separate paths to 𝐵1 and 𝐵2. This block 𝐴 must dominate both 𝐵1 and 𝐵2: it is
the nearest common dominator. Additionally, 𝐴 is the block that contains the branch instruction
associated with the phi node in 𝐶 . Therefore, SpEQ uses the dominator tree to find the nearest
common dominator and the associated branch condition.
In Figure 2b, for.body is the nearest common dominator of if.then and itself. Therefore,

%tobool.not is the branch condition associated with MemoryPhi 2. The phi node is represented
as a functional if that returns %a.1 or %a based on the value of %tobool.not (Figure 2c).
In addition to conditional branches, LLVM also controls execution flow with switch, function

calls, and exceptions. In this paper, we focus on branch instructions only, as it is the most common
case in codes we focus on.

3.3 Loops
SpEQ also represents loops as values to provide several benefits for equivalence checking and
equality saturation. Recall that SpEQ represents loops using the fold function:

⟨𝑟1, . . . , 𝑟𝑠⟩ = fold ⟨𝑎1, . . . , 𝑎𝑛⟩ (λ ⟨𝑝1, . . . , 𝑝𝑛⟩ iv. body) lb ub

Figure 2c shows an example fold representation of the program in Figure 2a. The return values
⟨𝑟1, . . . , 𝑟𝑠⟩ are the loop’s live-outs; registers that are live across a loop boundary, and any modified
memory regions. The %inc register in Figure 2b, which is used in a return statement outside the
loop, is one example. The value of the example loop is the tuple (%a.2, %inc) as shown in Figure
2c. To easily retrieve live-outs, SpEQ converts loops into Loop Closed SSA Form (LCSSA) [30], which
places all live-outs inside the loop exit block.
The initial values ⟨𝑎1, . . . , 𝑎𝑛⟩ are computed from the phi nodes in the loop header block (the

block that dominates all loop blocks). To guarantee that the header block has a single unique
predecessor (the preheader), SpEQ also converts loops into Loop Simplify Form [31]. Therefore, the
initial values for each phi node are incoming from the loop preheader. Figure 2b shows how the
MemoryPhi in block for.body (loop header) has the incoming value LOE from block for.preheader
(loop preheader). Although LOE represents the entire initial heap state, SpEQ disambiguates this to
the initial state of %a.
To complete the translation of a loop into a fold, the combining function is constructed. The

input parameters for the combining function are the phi nodes from the loop header, including
the induction variable iv. The iteration domain of the loop is supplied to the fold through the lb
and ub parameters. The fold also accepts an optional stride argument, which is one by default (we
omit the stride in this paper, unless it is not one). Any loop domain with a constant stride that is
not modified within the loop body can be described this way. Finally, the combining function body
is recursively defined as the FIR of the loop’s basic blocks: therefore, all instructions in the loop
body are guaranteed to be in FIR.

3.4 FIR Requirements
SpEQ performs an initial legality analysis to ensure that the input LLVM IR can be represented
in FIR. Loop induction variables must be integers with regular steps (AddRec expressions). This
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Program ::= list Loop
Loop ::= fold (list Val) Abs 𝐸𝑥𝑝 𝐸𝑥𝑝

Abs ::= λ list Var . list Inst
Inst ::= LLVM IR Instruction

| if Exp then Exp else Exp

| Loop

Exp ::= Val | Var
Var ::= LLVM IR Register Name
Val ::= Constant number

Fig. 3. The grammar for FIR.

also implies that the induction variable’s upper and lower values can be determined through static
analysis. Non-memory instructions with side-effects (like IO) are unsupported; however, functions
that may modify memory (such as memset or user-defined functions) are supported, through the
MemorySSA analysis. Finally, a loop nest is representable in FIR only if it and all of it’s children
are representable.

4 EQUIVALENCE CHECK
This section explains the equivalence check phase, which confirms whether SpEQ has successfully
identified all necessary preconditions for safe translation, and if so, returns a precondition-free
version of the input code for the equality saturation step. We first explain how storage formats
introduce preconditions to sparse linear algebra codes.
Code optimizations are typically equality preserving; the semantics of the original program

should never be altered. Some optimizations only preserve equality under certain preconditions.
For example,

√
𝑎2 ↦→ 𝑎 is sound under the precondition that 𝑎 ≥ 0. Similarly, sparse computations

are the result of optimizing dense computations for sparsity. Any storage format used in a sparse
linear algebra computation will represent a valid tensor only under certain preconditions, which
are specific to every format. Just as an equivalence check between

√
𝑎2 and ↦→ 𝑎 will fail without

the sufficiently strong precondition 𝑎 ≥ 0, an equivalence check between sparse and dense com-
putations will fail without the preconditions of storage formats. This is why SpMV and GEMV
cannot be considered equivalent through typical verified lifting techniques, which do not discover
preconditions. On the other hand, idiom matching techniques ignore preconditions entirely, leading
to unsafe translation.
SpEQ’s goal is to extract the high-level semantics from sparse computation by removing any

details related to storage formats. By constructing a format-agnostic (dense) version 𝐴, and proving
it is equal to the sparse input code 𝑁 under particular preconditions, SpEQ safely extracts the
high-level semantics (program 𝐴). The equivalence check consists of several stages:

(1) A program analysis identifies storage formats in the input code to create a format-agnostic
form of the input code and propose preconditions (Section 4.1.1).

(2) SpEQ constructs a simulation relation between the input code and its format-agnostic version
(Section 4.2).

(3) SpEQ verifies that the simulation relation is sufficient to prove equivalence between the
two codes (Section 4.4).



8 Laird et al.

Fig. 4. Data dependence graphs for accessing a CSR matrix (left), and the running example input code (right).

If the equivalence check succeeds, SpEQ uses the result of static analysis to generate an executable
run-time check that verifies the preconditions (Section 4.5). We now explain each stage of the
equivalence check in order.

4.1 Create Format Agnostic Code
Before performing the equivalence check, SpEQ must identify all preconditions of the sparse input
code and propose a precondition-free version. If SpEQ does not capture all necessary preconditions,
the equivalence check fails and translation stops. First, we explain the static analysis SpEQ performs
to identify storage formats and their preconditions. Next, we explain how SpEQ constructs a
mapping between sparse and dense data structures, in order to construct a format-agnostic code
version and begin the equivalence check.

4.1.1 Recognize Storage Formats. The purpose of data compressed formats is to reduce storage
requirements and to only store (and compute on) the non-zero elements of a tensor. A wide range of
disparate storage formats exists due to diverse sparse patterns that arise from different application
areas. Commonly used formats include compressed sparse row (CSR), compressed-sparse column
(CSC), and coordinate (COO). Compressed formats are used to retrieve the tensor data; they are
not used to express the computation itself. For example, in an implementation of 𝑦 = 𝐴𝑥 , 𝐴 can be
stored in any of the compressed formats CSR, CSC, COO, etc.; the computation is still multiplying
the sparse matrix with a vector (SpMV), independent of the format chosen. However, prior idiom
matching techniques require that a pattern be defined for each possible computation/storage format
combination, leading to a large (exponentially growing) number of required patterns. Instead,
SpEQ decouples computation from storage format details. A key insight is that each storage format
induces specific program properties that must exist in the code using that format. SpEQ’s strategy
for recognizing storage formats is to inspect the data dependence graph (DDG) of input codes for
different format characteristics.

Figure 4 shows two DDGs side-by-side. The left-hand side shows a DDG for any code, regardless
of computation, that uses the canonical form of CSR (a generic data-flow graph). For example, there
must exist an iterator I, ranging from 0 to 𝑁𝑘 , that indexes a pos array. The right-hand side shows
the corresponding DDG for the example input code from Figure 1a. Because there is a possible
substitution from the left-hand side graph (CSR) to the right-hand side graph (input code), SpEQ
considers (row,col,a) to describe a sparse matrix stored using the CSR format. We say that the
corresponding nodes in the user input code match CSR.

In many sparse codes, there is a dependence between different storage formats. For example, in
Figure 4, (row,col,a) must be identified as a possible sparse matrix to understand p’s context as
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%for = 𝛌 double %sum.03, i32 %k.02 .
%2 = %a[%k.02]
%3 = %col[%k.02]
%4 = %p[%3]
%5 = %2 * %4 + %sum.03

(%5) = fold (double 0.0) %for (i32 %0) (i32 %1)

(a) The running example 1a in FIR.

(b) A segment of the joint transition system

between 5a and 5c.

%for.dense = 𝛌 double %sum.03.dense, i32 %k.02.dense .
%a.dense.elem = %a.dense[%j.05 * m + %k.02.dense]
%p.elem = %p[%k.02.dense]
%"5.dense" = %p.elem * %a.dense.elem + %sum.03.dense

(%5.dense) = fold (double 0.0) %for.dense (i32 0), (i32 %1.dense)
crd: (%3 = i32 %k.02.dense)
val: (%2 = double %a.dense.elem)

(c) The precondition-free version of 5a in FIR.

Fig. 5. The inner loop of the running example 1a in FIR (5a) and its precondition-free version (5c), with the

joint transition system between them (5b).

a dense vector indexed by sparse structure; otherwise, the irregular access on p cannot be analyzed.
SpEQ uses a worklist algorithm to find all possible matches until a fixed point is reached (no
more matches are found). For example, consider the case where SpEQ attempts to match p with a
storage format before a was matched with CSR (Figure 4). Then, no matching format is found for p,
and (row,col,a) is matched with CSR. On the next iteration of the algorithm, SpEQ succeeds in
matching p as a dense 1D vector because col is associated with CSR.

SpEQ leverages insights from prior work on generalizing sparse storage formats [11] to search for
different formats and their preconditions. SpEQ currently focuses on CSR, CSC, and 1-2 dimensional
dense tensors, since they are the formats commonly used in sparse linear algebra codes. Additional
or non-standard storage formats can be supported by manually providing their corresponding
generic data-flow graph to SpEQ. Next, we describe how sparse storage format information is used
to construct a format-agnostic version of the input program.

4.1.2 Transform to Dense. The format-agnostic version is created based on the format recognition
step. Figure 5a shows the FIR for the inner loop of the running example (Figure 1a). Figure 5c
shows the format-agnostic version of 5a. For clarity, the load and getelementptr instructions
are replaced with C-style array syntax. Each detected storage format is converted into a dense
implementation, and a mapping back to the input code is stored at the end of the fold command.
For example, the col array stores column indices of the dense matrix. Therefore, the equality
%col[%k.02] == %k.02.dense must hold. This is stored in the crd map, shown in Figure 5c.
Additionally, the iteration domain of each fold is transformed to have the range [0,𝑚), where𝑚 is
a fresh integer constant. The crd and val maps relate the sparse data structures in the input code
to the dense data structures in the format-agnostic code. The next section explains this relation in
more detail.
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4.2 Construct Simulation Relation
In previous steps, SpEQ identified storage formats in the sparse input code and their preconditions,
then constructed a format-agnostic input code; this section explains how SpEQ performs the
equivalence check between the sparse and format-agnostic codes. Intuitively, two programs are
equivalent if they reach the same states in the same order. This is known as simulation between
two programs 𝐴 and 𝐵: when 𝐴 moves to a new successor state 𝑠 , system 𝐵 must have a related
state 𝑠′ [46].
However, some programs that do not satisfy simulation should still be considered equivalent.

Sparse computations are an example of such programs. Consider the running example and its
format-agnostic version in Figure 5a. When loop 5a skips a zero element, loop 5c does not. Loop 5c
has a successor state that does not exist for loop 5a, therefore, they are not similar. SpEQ uses a
relaxed version of simulation, called branching or stuttering simulation [38, 46], to prove equivalence
between such loops.
Figure 5b shows an example stuttering simulation between loop 5a and loop 5c. Related states

are shown with red dashed lines. States are related in two possible ways. One possibility is that the
states are synchronized, as shown by the green box in Figure 5b. This represents the case when
both programs are in the same state and operating on the same input data (for example, a sparse
and dense program processing nonzero elements). Synchronization conditions are stored in the
crd and val maps. The crd map stores relations between index functions of sparse structures and
dense structures in each program. The val map stores relations between the input data of each
program. For example, the maps in loop 5c have the following equalities:

%col[%k.02] == %k.02.dense
%a[%k.02] == %a.dense

Under the assumption that (row,col,a) represent a sparse matrix, these conditions relate equiva-
lent program states.

States can also be unsynchronized, rather than synchronized. The blue box in Figure 5b shows an
example unsynchronized state. Unsynchronized states occur from stutter transition, where there is
no corresponding state in the other transition system. For example, when a sparse code skips a
zero, the dense version has an extra unsynchronized state that processes the zero. Such states are
related only if the dense matrix contains a zero during the stutter transition; therefore, SpEQ relates
unsynchronized states by setting elements in the val map to zero. Figure 5b shows an example
where A[j*m+k2] == 0.

At this stage, SpEQ has a relation between sparse and dense programs, along with a sufficiently
flexible notion of equivalence: stuttering simulation. However, it remains to prove that the relation
proposed by SpEQ is actually a stuttering simulation. Next, we formalize how SpEQ proves a
proposed relation is a stuttering simulation.

4.3 Transition Systems
With our goal of establishing that two sequential programs compute the same values, we use tools
from simulation to formulate and automatically check a co-inductive argument for equivalence. In
the following we treat the sequential programs as transition systems and formulate a proof rule
that implies stuttering simulation between the two programs. The proof rule makes use of a third
transition system that captures the joint behaviour of the two systems.
A transition system TS is a tuple ⟨𝑉 ,Θ,T⟩, where 𝑉 is a finite set of system variables, Θ is a

satisfiable assertion characterizing all initial states, and T is a finite set of transitions [34]. The 𝑖’th
state in an execution, 𝜎𝑖 , assigns system variables 𝑉 to values. Every transition 𝑡 ∈ T is a function
that maps each state 𝜎𝑖 ∈ Σ to a set of states 𝑡 (𝜎𝑖 ) ⊆ Σ. Any state in 𝑡 (𝜎𝑖 ) is a 𝑡-successor of 𝜎𝑖 . The
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transition 𝑡 is called enabled for a state 𝜎𝑖 if 𝑡 (𝜎𝑖 ) ≠ ∅. Otherwise, it is disabled. An execution trace
𝜎 is a finite or infinite sequence of states, 𝜎0, 𝜎1, . . . , such that 𝜎0 |= Θ and for 𝑖 > 0, 𝜎𝑖 ∈ 𝑡 (𝜎𝑖−1)
for some 𝑡 ∈ T for every state 𝜎𝑖 . If 𝜎 is finite, none of the transitions in T are enabled in the last
state 𝜎𝑛 .

Every transition 𝑡 ∈ T is represented by a first-order formula 𝜌𝑡 (𝑉 ,𝑉 ′), known as the transition
relation, where the set 𝑉 ′ is a copy of 𝑉 of primed variables. The transition relation expresses the
relation between a state 𝜎𝑖 and any 𝑡-successors 𝜎𝑖+1 ∈ 𝑡 (𝜎𝑖 ) if and only if 𝜎𝑖 , 𝜎𝑖+1 |= 𝜌𝑡 (𝑉 ,𝑉 ′)
where 𝜎𝑖+1 is an evaluation of the variables in 𝑉 ′. The set of transitions T can be summarized as
a single transition relation as 𝜌 ≡ ∨

𝑡 ∈T 𝜌𝑡 . Thus, we can also represent a transition system as
⟨𝑉 ,Θ, 𝜌⟩. For example, the transition relation sum′ = sum + 1 expresses that sum′, the value of sum
in 𝜎𝑖+1, is 1 greater than sum, the value of sum in 𝜎𝑖 . Whether a transition 𝑡 is enabled or disabled
is also expressed using the transition relation 𝜌𝑡 : 𝐸𝑛(𝑡) = ∃𝑉 ′ . 𝜌𝑡 (𝑉 ,𝑉 ′). Note that 𝐸𝑛(𝑡) is true
only if 𝑡 (𝜎𝑖 ) is not empty for at least some 𝜎𝑖 . In addition to transitions extracted from code, we
introduce the idling (or stuttering) transition 𝜖 , where 𝜌𝜖 : 𝑉 = 𝑉 ′. The transition is used to model
a sparse program that does not advance, while the dense version processes a zero.

4.3.1 Transition Systems from Folds. Consider any fold in FIR:

⟨𝑟1, . . . , 𝑟𝑠⟩ = fold ⟨𝑎1, . . . , 𝑎𝑛⟩ (λ ⟨𝑝1, . . . , 𝑝𝑛⟩ iv. body) lb ub

We create a tuple acc = ⟨acc1, . . . , acc𝑛⟩ with the same sort as ⟨𝑎1, . . . , 𝑎𝑛⟩. Then, the transition
system for a fold is straightforwardly extracted:

𝑉 = ⟨𝑝1, . . . , 𝑝𝑛⟩
Θ = acc = ⟨𝑎1, . . . , 𝑎𝑛⟩ ∧ iv = lb

𝜌𝑏𝑜𝑑𝑦 (𝑉 ,𝑉 ′) = iv < ub

∧ iv′ = iv + stride

∧ acc′ = (λ ⟨𝑝1, . . . , 𝑝𝑛⟩ iv. body) ⟨acc1, . . . , acc𝑛, iv⟩

FIR enables a generic and compact method for encoding loops as transition systems.

4.4 Proving Stuttering Simulation
We work with two transition systems TS𝑁 and TS𝐴 and compose them into a single transition
system TS𝑁𝐴. The main property of the joint transition system is that it captures that the two
programs compute the same outputs, not only when they terminate but also at every step. To
accomplish this, TS𝑁𝐴 is constructed from a cross-product of TS𝑁 and TS𝐴 where the TS𝑁 is allowed
to stutter when TS𝐴 does not update output variables. The resulting system preserves equality of
output variables at every step. We construct the joint system as follows:

𝑉 𝑁𝐴 ≡ 𝑉 𝑁 ,𝑉𝐴

Θ𝑁𝐴 ≡ Θ𝑁 ∧ Θ𝐴

𝜌𝑁𝐴 ≡ 𝜌𝐴body ∧ ((𝜌𝑁body ∧𝑀 = 0) ∨ (𝜌𝑁𝜖 ∧𝑀 > 0))

where𝑀 is a well-order used to ensure that TS𝑁 is eventually forced a non-stuttering step. For a
suitable𝑀 , the joint system has the property that every reachable state𝜎𝑁𝐴

𝑖 of TS𝑁𝐴 is a composition
of reachable states in the two original systems, and every transition 𝜎𝑁𝐴

𝑖 , 𝜎𝑁𝐴
𝑖+1 is a step of TS𝐴 and

either a step in TS𝑁 or an idling step. Conversely every pair of sequences 𝜎𝑁 , 𝜎𝐴 corresponds to a
sequence 𝜎𝑁𝐴 that can be mapped back to the original sequences modulo stuttering steps for 𝜎𝑁 .
When the joint system has the property that it entails an invariant WA = WN for output variables
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For assertion WA = WN over disjoint 𝑉𝐴, 𝑉 𝑁 ,

SR1: Θ𝐴𝑁 =⇒ 𝐼

SR2: 𝐼 ∧ 𝜌𝑁𝐴 =⇒ 𝐼 ′

SR3: 𝐼 =⇒ WA = WN

SR4: 𝐼 ∧ 𝜌𝑁𝐴 ∧ 0 < 𝑀 =⇒ 0 ≤ 𝑀 ′ < 𝑀

SR5: 𝐼 ∧ 0 = 𝑀 ∧ 𝐸𝑛
(
𝑏𝑜𝑑𝑦𝑁

)
=⇒ 𝐸𝑛

(
𝑏𝑜𝑑𝑦𝐴

)
TS𝑁 and TS𝐴 are stutter similar with respect to WA = WN .

Fig. 6. Stuttering Simulation Rule (SR)

𝑊 ⊆ 𝑉 , we say that the two transition systems are stutter similar on the relation WA = WN . SpEQ
uses the proof rule SR in Figure 6 to prove TS𝑁 and TS𝐴 are stutter similar.

Proposition 4.1 (Correctness of SR). When there is an inductive invariant 𝐼 and well order
𝑀 satisfying the premises in Figure 6, then TS𝐴 is stutter-similar to TS𝑁 . Furthermore, when TS𝑁

terminates, TS𝐴 also terminates.

Proof Outline. The argument is by induction on length of traces 𝜎𝐴, 𝜎𝑁 , 𝜎𝑁𝐴. The premises
SR1, SR2 establish that 𝐼 is an inductive invariant over 𝜌𝑁𝐴, which is either based on joint steps
of the two systems or a step of TS𝐴 and a stutter with respect to TS𝑁 . Premise SR3 establishes
that WA = WN holds at every state and therefore after termination. Premise SR4 ensures that the
joint system cannot be stuck in idling steps for TS𝑁 , and SR5 establishes that when the well-order
cannot be decreased, the traces of TS𝑁 have a matching state in TS𝐴. □

We are left with the task of finding the inductive invariant 𝐼 and measure𝑀 . This is where we
will use the auxiliary predicates Sync and NotSync. For this purpose we use the following insights:

• The well order𝑀 can be extracted from the programs.
• The synchronization points, where the joint transition system performs non-idling steps,
can be captured by a condition Sync that can be extracted from the programs.

• Similarly, non-synchronization is captured by a condition NotSync.
• The two conditions are used to define a transition abstraction 𝜌𝐴𝑁𝛼 ≡ (Sync ∧ 𝜌𝐴body ∧

𝜌𝑁body) ∨ (NotSync ∧ 𝜌𝐴body ∧ 𝜌𝑁𝜖 ) , which represents an over-approximation of 𝜌𝑁𝐴, since it
replaces the measure conditions on𝑀 by consequences.

• We can, optionally, also establish that 𝜌𝐴𝑁𝛼 is an over-approximation of 𝜌𝑁𝐴 by checking
𝐼 ∧ 𝜌𝑁𝐴 ∧ 0 < 𝑀 =⇒ NotSync, and 𝐼 ∧ 𝜌𝑁𝐴 ∧ 0 = 𝑀 =⇒ Sync.

To synthesize an inductive invariant 𝐼 we found that a single iteration of back-propagation [8, 25]
applied on 𝜌𝐴𝑁𝛼 is sufficient. Back-propagation is based on the weakest liberal precondition to
derive a candidate 𝐼 automatically. The weakest precondition for a transition relation 𝜌 is shown in
Equation 1. We can then define the candidate for 𝐼 as:

𝐼 ≡ B1
𝜌𝐴𝑁𝛼 (WA = WN ) ≡ (WA = WN ) ∧𝑤𝑝 (𝜌𝐴𝑁𝛼 ,WA = WN )

The Sync and NotSync predicates are extracted from the program relation formulated by SpEQ.
Recall that the relation consists of two maps, crd and val. Figure 5c shows an example relation.
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𝑤𝑝 (𝜌, 𝜑) (𝑉 ) ≡ ∀𝑉 ′ · 𝜌 (𝑉 ,𝑉 ′) =⇒ 𝜑 (𝑉 ′) (1)

B0
𝜌 (𝜑) ≡ 𝜑, B𝑛+1

𝜌 (𝜑) ≡ 𝜑 ∧𝑤𝑝 (𝜌,B𝑛
𝜌 (𝜑)) (2)

Fig. 7. Weakest liberal pre-conditions and back-propagation

Θ𝐴𝑁 ≡ Θ𝑁 ∧ Θ𝐴 ≡ (sum = 0 ∧ k = row[j]) ∧ (sum2 = 0 ∧ k2 = 0)
WA = WN ≡ sum = sum2

𝐼 ≡ B1
𝜌𝐴𝑁𝛼 (WA = WN ) ≡ (sum = sum2) ∧ (∀𝑉𝐴′

𝑉 𝑁 ′
. 𝜌𝐴𝑁𝛼 =⇒ 𝑊 𝐴′

=𝑊 𝑁 ′ )
Sync ≡ ∧

𝑒∈crd∪val 𝑒 ≡ col[k] = k2 ∧ a[k] = A[j*m + k2]
NotSync ≡ ∧

𝑣∈𝐵 𝑣 = 0 ≡ A[j*m + k2] = 0
𝑀 ≡ 𝑎 − crd(𝑎) ≡ col[k] − k2

Fig. 8. Instantiating rule SR for the system in the running example.

The Sync and NotSync predicates are generated from val and crd, where val : 𝐴 → 𝐵 and
crd : 𝐴 → 𝐵, |𝐴| = |𝐵 | = 1:

Sync ≡
∧

𝑒∈crd∪val
𝑒, 𝑁𝑜𝑡𝑆𝑦𝑛𝑐 ≡

∧
𝑣∈𝐵

𝑣 = 0

For example, the Sync predicate for the two codes in Figure 5c is col[k] = k2∧a[k] = A[j*m + k2].
The NotSync predicate for the two codes in Figure 5 is A[j*m + k2] = 0. The measure function,𝑀 ,
is computed from the crd map:

𝑀 ≡ 𝑎 − crd(𝑎), 𝑀 ′ ≡ 𝑎′ − crd(𝑎)′, 𝑎 ∈ 𝐴

This is similar to the ranking function used in [38].
Condition SR4 ensures that the measure decreases at each non-synchronization step. In other

words, as the sparse program skips zeros, the affine program is guaranteed to “catch up” eventually.
Although k′ = k in a stutter transition for the sparse example, k2′ = k2 + 1 in the dense version,
allowing the measure to decrease. Additionally, the two programs must rejoin again, at which point
the distance is 0, shown in condition SR5 that is used to ensure that both programs can take a
synchronization step.
Above, we have shown how auxiliary predicates and the measure predicate are generated

algorithmically from information in crd and val to instantiate the proof rule SR. Figure 8 shows
an example instantiation of the rule for the running example. Using an SMT solver each formula in
the proof rule is checked for validity, dually their negations are checked for unsatisfiability. If all
premises are valid, the proof rule establishes thatWA = WN holds in all reachable states of TS𝑁𝐴.
The equivalence checker module concludes that the programs are equivalent under the storage
format preconditions. However, SpEQ can only know at run-time whether the preconditions are
satisfied. The next section explains how SpEQ builds an executable check to verify that the required
properties are satisfied at run-time.

4.5 Run-time Check
If the equivalence check succeeds, SpEQ needs to ensure that the input data at run-time satisfies
the required storage format preconditions. By this stage, storage formats used in the input code are
known, otherwise, the equivalence check would fail. Therefore, SpEQ generates a run-time check
for the requirements of each format, which are well-studied in prior works [11].
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Most common formats require a combination of two properties: monotonicity and periodic
monotonicity. For example, the CSR storage format requires that elements of the row array increase
monotonically. The col array stores column indices of elements in each row; therefore, regions of
col corresponding to a row must strictly increase, referred to as periodic monotonicity. To generate
a run-time check for a storage format, SpEQ emits a loop for each array with a required property
(monotonic/periodic monotonic), in the same loop order as the input code.

The running example in Figure 1d shows the run-time check that SpEQ generates for CSR. The
outer loop ensures that row elements are increasing (monotonic); the inner loop ensures that col
elements are increasing within a row (periodic monotonicity). SpEQ also uses the run-time check to
calculate the number of rows or columns in a sparse matrix, which is required by some backends.

5 IDENTIFY KERNELS
The fundamental goal of SpEQ is to detect a code’s semantics. By understandingwhat the code “does,”
it can be replaced with high-performance library calls or DSL code that does better optimization
than a general-purpose compiler. Searching for specific code patterns (idiom matching) is one
strategy to determine code semantics, but it is a fragile approach that covers a narrow notion of
equivalent semantics. On the other hand, synthesizing a code’s semantics from scratch (verified
lifting) is an expensive process.
Our insight is that detecting code semantics is only useful when an optimized implementation

exists. In other words, we do not care about deriving the semantics of arbitrary codes; rather, we only
want to know one code (input code) is equivalent to another (high-performance implementation).
SpEQ casts this equivalence problem as a congruence relation between programs. Therefore, instead
of deriving code semantics from scratch, we can leverage recent advancements to e-graphs, which
efficiently represent congruence relations over expressions [55, 56]. We first explain equality
saturation and e-graphs, and then describe how SpEQ uses equality saturation to match input code
with known reference implementations.

5.1 Equality Saturation
Basic term rewriting applies a single rewrite rule at a time, which destroys the original term and
makes the process sensitive to rewrite order (phase-ordering problem). Equality Saturation (EqSat)
[51] addresses the phase-ordering problem by performing all possible rewrites at each step and
storing each original and new term in an e-graph data structure. Recently, libraries such as egg
and egglog provide flexible and efficient methods of performing equality saturation [55, 56]. An
e-graph [39] efficiently represents a congruence relation over many expressions, which enables the
large set of terms created by EqSat to be stored compactly. E-graphs are a set of e-classes, which
contain e-nodes of the same equivalence class. An e-node is a function symbol with a list of children
e-classes as the function operands.
Consider the expression 𝑎 × 0. To apply a rewrite rule, for example 𝑥 × 0 → 0, matches for

the left-hand side pattern term 𝑝 are found through e-matching [16, 18, 56]. The result is a set of
substitutions, for example, {𝑥 ↦→ 𝑎}, such that 𝑝 would be represented in the same e-class as 𝑎 × 0.
The substitutions are applied to the right-hand side pattern, 𝑥 × 0 ↦→ 𝑎 × 0, and the resulting term
is merged into the relevant e-class.
SpEQ relies on e-matching to identify kernels in user input code (hereafter, a kernel refers to

a linear algebra subprogram, e.g. matrix-vector multiplication [9]). For example, given a rewrite
rule 𝑔 → GEMV(. . . ), where 𝑔 is a pattern representing a GEMV implementation, segments of user
code that match 𝑔 will be merged into the same e-class as GEMV. However, kernels are provided
to SpEQ as concrete implementations, not patterns. The next section describes how concrete
implementations are converted into patterns that can be used for e-matching.
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void gemv(double *y,
double beta,
double alpha,
double *a,
int lda,
double *x,
int m,
int n) {

for (int i = 0; i < m; ++i) {
double sum = y[i]*beta;
for (int j = 0; j < n; ++j)

sum += alpha * a[i*lda + j] * x[j];
y[i] = sum;

}
}

(a) The GEMV reference implementation

used by SpEQ .

(b) The rewrite rule generated from the GEMV refer-

ence implementation 9a.

for (int i = 0; i < m; ++i) {
y[i] = y[i]*beta;
for (int j = 0; j < n; ++j)

y[i] += alpha * a[i*lda + j] * x[j];
}

(c) The reference implementation 9a loop

nest after applying the store-sink rewrite

rule.

Fig. 9. The GEMV reference implementation 9a is abstracted into the rewrite rule 9b. From the reference

implementation, SpEQ also generates and abstracts additional forms, such as 9c, to support “one-way” rules

like hoisting stores out of loops.

5.2 Abstracting Implementations to Rewrite Rules
SpEQ automatically converts concrete kernel implementations into rewrite rules that are used
during EqSat. An input kernel implementation is a function in LLVM IR and then converted to the
functional IR. The function name, input parameters, and return type are extracted from the LLVM
IR. The function parameters define which program variables should be symbolic and converted to
placeholder variables in the pattern.

Figure 9 shows an example reference implementation for GEMV (Figure 9a) and its corresponding
rewrite rule after abstraction (Figure 9b). Given a reference implementation, the rewrite rule 𝑙 → 𝑟

is constructed as follows. First, to obtain 𝑙 (bottom of Figure 9b), SpEQ converts the reference
implementation to FIR. Each occurrence of a function parameter in the FIR becomes a variable
placeholder (blue curly-braces) for e-matching. Then, 𝑟 is a fresh function symbol with the same
name as the reference implementation and with each variable placeholder as an input argument
(top of Figure 9b). The resulting rewrite rule corresponds to collecting the matching arguments
from the user input code and outlining it as a call to the kernel. In practice, user input code will not
exactly match the structure of the rewrite rule generated by a kernel implementation. To be robust
in such cases, SpEQ also includes rewrite rules for common arithmetic and loop transformations.
Table 1 shows a list of generic rewrite rules used by SpEQ for deoptimization. While formally
verifying the soundness of each rule is possible, it is not the main focus of this paper, and we leave
it for future work. In practice, no incorrect translations have occurred while evaluating SpEQ.
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Transformation Rule

Sink
𝑜𝑝 ∈ commutative, associative, then:

op(𝑎, if 𝑐 then 𝑥 else 𝑦) → if 𝑐 then op(𝑎, 𝑥) else op(𝑎,𝑦)
op(𝑎, fold ret 𝑐 start lb ub) → fold ret 𝑐 op(𝑎, start) lb ub

Arithmetic 𝑎 + 0 → 𝑎, 𝑎 · 0 → 0, 𝑎 + 0 → 𝑎, 𝑎 < 𝑏 → 𝑏 > 𝑎, . . .
op(𝑎, 𝑏) → op(𝑏, 𝑎), op ∈ commutative

Loop Interchange
𝑐 has no dependencies, then:

fold ret1 (λ params1, 𝑖1. fold ret2 𝑐 start2 lb2 ub2) start1 lb1 ub1 →
fold ret1 (λ params1, 𝑖2 . fold ret2 𝑐 start2 lb1 ub1) start1 lb2 ub2

Loop Fission fold ⟨𝑟1, . . . , 𝑟𝑛⟩ 𝑐 𝑠 lb ub → let 𝑟1 = fold 𝑟1 𝑐 𝑠 𝑙𝑏 𝑢𝑏 in let 𝑟2 = . . .

Merge 𝑠1 = 𝑠2 ∧ 𝑖 = outer fold induction variable, then:
fold 𝑟 (fold 𝑟 𝑐 𝑠2 𝑖 min(ub, 𝑖 + 𝐵)) 𝑠1 lb ub → fold 𝑟 𝑐 𝑠1 lb ub

Table 1. A subset of the generic rewrite rules used by SpEQ .

It is a well-known problem that certain “one-way” loop transformations are difficult to describe
through rewrite rules [27, 55]. For example, consider the two program versions in Figure 9a and
Figure 9c. Rather than performing a store at each loop iteration, it is more efficient to accumulate a
scalar result and only perform one store if possible. Therefore, for the purposes of optimization,
it is better to rewrite Figure 9c to Figure 9a. Performing transformation in this direction requires
introducing a new variable sum in the right-hand side of a rewrite rule, which is not possible.
However, it is possible to express in the opposite direction (9a to 9c). Therefore, as an initial step,
SpEQ applies such “one-way” rules to the reference implementation and obtains a class of equivalent
reference implementations. Each one is abstracted and added as a rewrite rule.

User codes often omit parameters that general-purpose reference implementations do not. Con-
sider the alpha and beta parameters of the GEMV reference implementation (Figure 9a). Commonly,
user codes implicitly set alpha=1 and beta=0 by omitting alpha and overwriting the output vector.
In order to recover the values of these parameters from the input code, SpEQ also includes a set of
“expansion” rewrite rules. One example is 𝑎 → 𝑎 × 1. Because these rules can cause exponential
growth in the e-graph, SpEQ takes advantage of egglog’s scheduling API to limit how often the
rules are applied. Empirically, we have found that a single application of the expansion rules is
sufficient to discover implicit parameters in the chosen benchmarks (Section 6).

5.3 Code Generation
After each kernel implementation is translated into a rewrite rule, SpEQ runs EqSat until the
e-graph is fully saturated or a configurable timeout is reached. It is the job of each backend to
decide which kernels to translate and how to translate them. In the next section, we present three
backend examples: OMP, cuSPARSE, and Intel MKL [6, 12, 36].

6 EXPERIMENTAL EVALUATION
This experimental evaluation assesses (1) the robustness of SpEQ’s matching technique compared
to KernelFaRer and LiLAC (Section 6.2); (2) the performance impact from replacing user input
code with high-performance library calls and the related run-time check overhead (Section 6.3);
and (3) the effect of equivalence checks and EqSat on compilation time (Section 6.4).
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SpEQ is implemented using LLVM 17 [28], the Z3 SMT solver [17], and the egglog equality
saturation library [56]. An initial LLVM pass performs format detection and emits the input code as
FIR program 𝑓 . Next, a Python script parses the FIR, verifies any proposed precondition-free loops,
and replaces the original loop if the equivalence check succeeds, resulting in 𝑓 ′. Finally, SpEQ adds
𝑓 ′ to an e-graph and uses the egglog Python interface to perform equality saturation. Bottom-up
extraction is used to retrieve translated kernels from the e-graph.

6.1 Experimental Setup
This section presents the experimental setup, methodology, benchmarks, and configuration of all
tools used in the evaluation.

6.1.1 Architecture. All experiments are run on an Intel Xeon W-2145 CPU and NVIDIA GeForce
RTX 3080 Ti GPU. Hyperthreading is disabled, leaving the CPU with a total of eight cores.

6.1.2 Prior Work. We compare SpEQ against KernelFaRer and LiLAC, which are two state-of-
the-art work based on idiom matching. All three tools are based on LLVM. We build the LiLAC
Clang executable using repositories shared with us by the authors (release build).1,2 We build the
KernelFaRer Clang executable using the repository cited in their paper [15].3

6.1.3 Compilation Pipeline. Each tool has a differing compilation pipeline for transforming the
LLVM IR into an expected form. For example, LiLAC uses the LLVM version 7.0.0 O3 pipeline
with loop unrolling disabled. KernelFaRer uses the LLVM version 15.0.6 O3 pipeline, with loop
unrolling and vectorization disabled. SpEQ uses a different pipeline based on LLVM version 17.0.0.
Therefore, for a fair comparison of compilation overhead, we only time the compiler passes that
are specific to each technique. LiLAC has three relevant passes: preprocessor, flangfix, and
replacer. KernelFaRer has one relevant pass: GEMMReplacerPass. SpEQ has one relevant LLVM
pass, SpEQPass, for emitting FIR, along with the EqCheck and EqSat passes. The compilation
overhead of each tool is the sum of its relevant passes.

6.1.4 Backends. This evaluation uses the following backends for SpEQ: Intel MKL (CPU) [36],
OpenMP (CPU) [6], and NVIDIA cuSPARSE (GPU) [12]. The MKL and OpenMP libraries are called
in 8 threads to use all the cores.

6.1.5 Kernels. Table 2 shows the four kernels used in the evaluation: GEMM, SpMV, histogram, and
reduction. All four computations are often compute bottlenecks in applications such as scientific
computing and machine learning. GEMM is a dense matrix-matrix multiplication that does not
require a run-time check. SpMV is a sparse matrix-vector multiplication that does require a run-time
check. The TACO-Gen and CSparse benchmarks contain an SpMV using the CSC storage format,
while the Scimark4, NPB CG, and Netlib C benchmarks use the CSR format. Histogram contains
indirect memory accesses but also does not require a run-time check. The Reduction kernel reduces
repeated associative operations into a scalar result.

6.1.6 Benchmarks. We select ten benchmarks to evaluate the SpEQ implementation: Scimark 4
[42], Conjugate Gradient (CG) and Integer Sort (IS) kernel from NAS Parallel Benchmarks (NPB)
[32], Netlib sparse benchmark suites [19], Polybench [41], Parboil [49], TPAL [45], CSparse [14], a
sparse kernel generated from the TACO compiler [26], and TSVC2 [33]. We report the median of
10 executions for each benchmark. Each execution time is normalized to the sequential benchmark
execution time.
1https://github.com/ginsbach/llvm/tree/linearalgebra
2https://github.com/ginsbach/clang/tree/research
3https://github.com/jaopaulolc/KernelFaRer

https://github.com/ginsbach/llvm/tree/linearalgebra
https://github.com/ginsbach/clang/tree/research
https://github.com/jaopaulolc/KernelFaRer
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Benchmark Computation Kernel
Polybench GEMM GEMM
TACO-Gen SpMV+CSC GEMV
CSparse SpMV+CSC GEMV
Scimark4 SpMV+CSR GEMV
NPB CG SpMV+CSR GEMV
Netlib C SpMV+CSR GEMV
TPAL SpMV+CSR GEMV
NPB IS Histogram Histogram
Parboil Histogram Histogram
TSVC2 Reduction Reduction

Table 2. The different kernels present in each selected benchmark.

6.1.7 Timing Methodology. To guarantee a fair comparison against KernelFaRer and LiLAC, the
same input codes are compiled. Additionally, we collect the time results of the loop passes added
by prior tools and also collect the compile-time of O3 optimization pipeline as a reference.
Compile-time overhead for all tools is measured using the -ftime-report compilation flag,

which emits the time spent in each pass during compilation to standard output. Compile-time
overhead is the sum of time spent in each tool’s relevant passes (Section 6.1.3). Because SpEQ has
two passes that are not implemented in LLVM, they are timed using the Python time module.

6.2 Robustness
In this section, we evaluate the ability of SpEQ, KernelFaRer, and LiLAc to detect different
implementations of the same computation. Table 3 shows the four different computations used in
this evaluation and the ability of each tool to detect it.

While SpEQ and KernelFaRer both can detect the GEMM in the Polybench suite, LiLAC cannot,
despite searching for a GEMM idiom. This is because the GEMM idiom that LiLAC uses for detection
assumes that the inner-most loop (dot product) accumulates into a scalar variable. However, the
GEMM in Polybench accumulates directly into the destination matrix.

SpEQ and LiLAC both focus on sparse linear algebra, while KernelFaRer focuses on dense linear
algebra. SpEQ is able to detect and derive preconditions for SpMV using both CSC and CSR, in all
benchmarks. However, LiLAC can only detect SpMV using CSR, and not CSC. This is because LiLAC
can only support idioms that express loops performing a reduction. Supporting other structures,
such as the indirect memory store in SpMV using CSC, is not possible in the current LiLAC idiom
grammar. In contrast, SpEQ can recognize SpMV using CSR and CSC as two implementations of
GEMV by applying the generic rewrite rules shown in Table 1 during equality saturation.

SpEQ and LiLAC are able to detect histograms in the Parboil and NPB IS benchmarks. However,
LiLAC relies on a special description of histogram in its domain specific language, totaling 320
lines. In contrast, SpEQ’s description of histogram is 4 lines, shown below:

void histogram(int N, int *buckets, int *key, int add) {
for (int i = 0; i < N; ++i)

buckets[key[i]] = buckets[key[i]] + add;
}



SpEQ : Translation of Sparse Codes using Equivalences 19

GEMV
Tool GEMM SpMV+CSC SpMV+CSR Histogram Reduction

SpEQ • • • • •
KernelFaRer •

LiLAC ◦ • •
Table 3. Comparison of code semantics detection tools for different computations. The solid dot (•) denotes
correct detection. The circle (◦) denotes unsafe detection (preconditions ignored). No circle or dot denotes no

detection.

This description is flexible enough to capture the control-flow in Parboil’s histogram, where
buckets[key[i]] is conditionally incremented. Because FIR uses functional if constructs, which
reduce to a value, the add argument is guarded by the relevant condition.

6.3 Performance Impact
Figure 10 shows the potential performance benefits when SpEQ translates the input codes to the
chosen backends. The run-time check overhead is included as a percentage of execution time.

When the run-time check is executed inside a loop where its inputs do not change, such as inside
a conjugate gradient loop, the run-time check is loop-invariant and hoisted outside the loop to
amortize overhead. We have divided the attained results into two sub-figures as depicted in Figure
10 based on whether run-time check overhead is amortized or not. The left sub-figure illustrates
that the run-time check overhead is amortized by executing the translated code for numerous
iterations. The right sub-figure shows a slow-down for two reasons: (1) the translated code is only
executed once; therefore, the run-time check overhead is not amortized, and (2) CSC prevents
outer-loop parallelism. As a result, SpEQ-OpenMP only parallelizes the inner loop of SpMV CSC,
which causes synchronization overhead during each outer loop iteration.

The histogram computations in NPB IS and Parboil, as well as the reduction computation in
TSVC2, do not require a run-time check. However, the histogram in Parboil contains a conditional
update, which introduces additional synchronization overhead. Therefore, the OpenMP backend
disables parallelism, and the OpenMP execution time is the same as the sequential time. In con-
trast, the histogram in NPB IS and reduction in TSVC2 are parallelized efficiently using the OMP
reduction pragma. Because MKL and cuSPARSE do not implement histograms or reductions, the
corresponding bars of NPB IS, Parboil, and TSVC2 are not included.
In the benchmark code, SpEQ demonstrates a geometric mean speedup of 3.25×, 5.09× and

8.04× for OpenMP, MKL, and cuSPARSE, respectively. The run-time check overhead constitutes,
on average, 3.6, 6.1 and 4.2 percent of the execution time of the entire benchmark.

6.4 Compilation Time
In this section, SpEQ’s compile-time overhead is compared to KernelFaRer [15] and LiLAC [21],
as shown in Table 4. For reference, LLVM’s O3 pass compile-time latency is also shown.
SpEQ’s translation workflow comprises three phases: FIR, Parse + EqCheck, and EqSat. The

latter two phases exhibit much longer processing time compared to the first phase because they are
implemented in Python for proof of concept. Despite this, SpEQ’s compilation time is at most 190
milliseconds slower than LLVM’s O3 compilation time, which is implemented in highly optimized
and multithreaded C++ code.
On average, e-graphs contain 157 nodes after applying rewrite rules; the largest e-graph is

Parboil, with 277 nodes. At most 46 rules are applied per round.
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Fig. 10. The performance of SpEQ-generated code. Execution times are normalized to CPU sequential code

running times.

SpEQ
Benchmarks LLVM + O3 FIR Parse + EqCheck EqSat Total KernelFaRer LiLAC
Polybench 60.9 2.6 80.1 14.0 97.5 220.0 217.4
TACO-Gen 16.9 4.6 193.3 9.4 207.4 5.6 4.0
CSparse 15.0 2.8 89.1 9.9 101.8 5.8 4.0
Scimark4 20.2 3.4 85.2 14.7 103.3 146.6 6.3
NPB CG 16.7 6.5 99.3 91.7 114.9 5.9 4.3
Netlib C 23.3 2.9 119.0 9.1 131.0 5.3 4.1
TPAL 13.9 2.7 94.7 9.2 106.5 5.2 7.4
NPB IS 13.2 1.1 13.4 3.0 17.5 5.5 4.0
Parboil 24.5 2.7 44.5 5.6 52.7 5.6 5.1
TSVC2 29.2 0.8 19.2 3.7 23.7 3.5 5.0

Table 4. Comparison of translation time (in milliseconds).

7 RELATEDWORK
Idiom Matching. Prior works such as IDL and LiLAC implement idiom matching by solving a system
of constraints [21, 22]. Each idiom is associated with certain constraints, and code regions satisfying
those constraints are recognized as an idiom. The solution to the constraint system is used to
perform translation. KernelFaRer is another idiom matching tool that uses pattern-matching instead
of a constraint solver [15]. ATC uses a combination of synthesis, machine learning, and testing to
find candidate code regions [35]. KernelFaRer and ATC focus on dense linear algebra, while IDL
and LiLAC aim to support both dense and sparse codes.
Verified Lifting. Verified Lifting techniques typically translate codes through search: given the

user program, a translation tool searches for a semantically equivalent program in the target DSL,
using program synthesis and formal verification to find solutions [3, 24]. Unlike idiom matching,
the goal is not to identify a particular computational pattern, but rather find any mapping from one
language to another. Because verified lifting uses formal verification techniques, any translation is
guaranteed to be correct, meaning the original and translated program are semantically equivalent.
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Functional Intermediate Representations. Prior works have explored functional encodings for
other languages. Appel showed a correspondence between functional programming and SSA, with
loops defined through recursive function calls [5]. Radoi et al. propose an IR for Java based on the
lambda calculus [44]. Several lambda calculus-based encodings are also proposed for Rise and Lift
programs [23, 47, 48]. MLIR uses a recursive structure that is similar to the value-based design
of FIR [29]. The main contribution of SpEQ is not a functional-based IR, but rather a strategy of
program analysis. Therefore, we view IRs and languages such as MLIR or Rise as possible targets
for support through additional backends.

Verifying and Optimizing Sparse Programs. Inspector/executor strategies are a common program
transformation to optimize sparse or non-affine programs through dynamic parallelism [50]. Prior
works leverage storage format properties, such as monotonicity and periodic monotonicity, to
simplify inspector codes [37]. In addition, other works verify the inspector codes for sparse compu-
tations [40]. In addition to inspector/executor techniques, other works also extend the polyhedral
model to optimize non-affine codes [52–54]. Finally, Dyer et al. propose a functional language for
the bounded verification of sparse matrix computations [7, 20].

8 CONCLUSION
SpEQ uses a novel, fast, and flexible strategy for identifying preconditions in sparse linear algebra
codes and detecting semantics in programs. Any preconditions due to compressed storage formats
in sparse linear algebra codes are verified through a run-time check. Users can easily add new
code semantics to SpEQ’s analysis by supplying a reference implementation, rather than using a
complicated and non-portable API. Code generation for different high-performance libraries or
DSLs is supported through modular backends. SpEQ’s novel precondition-free transformation and
rewrite rule abstraction process enable quick and correct semantics detection.
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