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ABSTRACT B Urfused
Dependence between iterations in sparse computations causes %ms Jomt DAG
inefficient use of memory and computation resources. This Emf
paper proposes sparse fusion, a technique that generates effi- §10°
cient parallel code for the combination of two sparse matrix 5107
kernels, where at least one of the kernels has loop-carried ‘élo’ k 5
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sparse kernels separately. However, this approach leads to
synchronization overheads and load imbalance due to the
irregular dependence patterns of sparse kernels, as well as
inefficient cache usage due to their irregular memory access
patterns. Sparse fusion uses a novel inspection strategy and
code transformation to generate parallel fused code opti-
mized for data locality and load balance. Sparse fusion out-
performs the best of unfused implementations using ParSy
and MKL by an average of 4.2 and is faster than the best of
fused implementations using existing scheduling algorithms,
such as LBC, DAGP, and wavefront by an average of 4x for
various kernel combinations.
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Figure 1: The nonuniform parallelism in the DAGs
of sparse incomplete Cholesky and triangular solver
(annotated with unfused) and for the joint DAG of the
two kernels results in load imbalance. Higher value in
the y-axis shows high parallelism in a given wavefront.
Wavefront numbers in the x-axis are numbered based
on their order of execution.

1 INTRODUCTION

Numerical algorithms [32] and optimization methods [5,
11, 36] often involve numerous consecutive sparse matrix
computations. For example, in iterative solvers [32] such as
Krylov methods [13, 33], sparse kernels that apply a precondi-
tioner are repeatedly executed inside and between iterations
of the solver. Sparse kernels with loop-carried dependen-
cies, i.e., kernels with partial parallelism, are frequently used
in numerical algorithms, and the performance of scientific
simulations relies heavily on efficient parallel implemen-
tations of these computations. Sparse kernels that exhibit
partial parallelism often have multiple wavefronts of parallel
computation where a synchronization is required for each
wavefront, i.e., wavefront parallelism [19, 44]. The amount of
parallelism varies per wavefront and often tapers off toward
the end of the computation, which results in load imbalance.
Figure 1 shows with dark lines the nonuniform parallelism
for the sparse incomplete Cholesky (SpIC0) and the sparse
triangular solve (SpTRSV) kernels when SpTRSV executes
after SpICO completes. Separately optimizing such kernels
exacerbates this problem by adding even more synchroniza-
tion. Also, opportunities for data reuse between two sparse
computations might not be realized when sparse kernels are
optimized separately.
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1// SpTRSV(Lx=b), L={n,Lp,Li,Lx}
2Fuse:for(i1=0;il<n;il++){

3 for(i2=Lp[ill;i2<Lplil+1]-1;i2++){
+ x[i1] -= Lx[i2]*x[Li[i2]];

5}

6 x[i1] /= Lx([Lp[i1+1]-1]1;

7}

s// SpMV(y=Ax), A={n,Ap,Ai,Ax}

9 Fuse:for(j1=0;ji<n;j1++){

w for (j2=Ap[j1];j2<Apl[j1+1];j2++){ x
u Atomic:y[Ai[j2]] += Ax[j2]*x[j1];{ L}
2 }}
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Figure 2: Solid purple (G;) and dash-dotted yellow (G;) vertices in Figure 2b represent the iterations of SpTRSV and
SpMYV kernels shown in Figure 2a, respectively, and edges show the dependencies between iterations. Figures 2c-2e
show three different schedules for running SpTRSV followed by SpMV as shown in Figure 2b, where the number of
processors (r) is three. Dashed edges in Figure 2b show the dependencies between the two kernels and correspond
to the nonzero elements of matrix F. The unfused implementation schedules each DAG separately, as shown in
Figure 2c. Two different fused implementations in Figures 2d and 2e use both DAGs and the dependencies between

kernels to build a fused schedule.

Instead of iterations of sparse kernels being scheduled sep-
arately, they can be scheduled jointly. Wavefront parallelism
can be applied to the joint DAG of two sparse computations.
A data flow directed acyclic graph (DAG) describes the de-
pendencies between iterations of a kernel [9, 22, 40]. A joint
DAG includes all of the dependencies between iterations
within and across kernels. The joint DAG of sparse kernels
with partial parallelism and the DAG of another sparse ker-
nel provides slightly more parallelism per wavefront without
increasing the number of wavefronts. The yellow line in Fig-
ure 1 shows how scheduling the joint DAG of SpIC0 and
SpTRSV increases the parallelism per wavefront and signifi-
cantly reduces the number of wavefronts (synchronizations).
However, the load balance issues remain, and there are still
several synchronizations.

Wavefronts of the joint DAG can be aggregated to re-
duce the number of synchronizations. However, existing
DAG partitioners such as Load-Balanced Level Coarsening
(LBC) [10] and DAGP [23] may not achieve good load bal-
ance when applied to the joint DAG, because they aggregate
iterations from consecutive wavefronts, which may have
different amounts of parallelism. Moreover, by aggregating
iterations from wavefronts in the joint DAG, DAG partition-
ing methods may improve the temporal locality between
the two kernels, but this can compromise the spatial locality
within each kernel. For example, for two sparse kernels that
only share a small array and operate on different sparse ma-
trices, optimizing temporal locality between kernels will not
be beneficial. Finally, due to the dependence between ker-
nels, the number of dependence edges per iteration increases,
e.g., between 0.2-40% for matrices in this study, making it
challenging for existing DAG partitioners to create balanced
workloads for all cores.

We present sparse fusion, a technique that creates an effi-
cient schedule and fused code for combining a sparse kernel
with loop-carried dependencies and another sparse kernel.
Sparse fusion uses an inspector to apply a novel iteration
composition and ordering (ICO) runtime scheduling algo-
rithm on the DAGs of the two input sparse kernels. ICO uses
a vertex dispersion strategy to balance the workloads in the
fused schedule, uses two novel iteration packing heuristics
to improve the data locality by exploiting the spatial and tem-
poral locality of the merged computations, and uses vertex
pairing strategies to aggregate iterations without explicitly
joining the DAGs.

Motivation Example. Figure 2 compares the schedule cre-
ated by sparse fusion (sparse fusion schedule) with the sched-
ules created by applying LBC to the individual DAGs of each
sparse kernel (LBC unfused schedule) and LBC applied to
the joint DAG (LBC joint DAG schedule). All approaches
take the input DAGs in Figure 2b. Solid purple vertices rep-
resent the DAG of sparse triangular solve (SpTRSV), and
the dash-dotted yellow vertices correspond to sparse matrix-
vector multiplication (SpMV). LBC is a DAG partitioner that
partitions a DAG into a set of aggregated wavefronts called s-
partitions that run sequentially, each s-partition is composed
of some independent w-partitions. In the LBC unfused sched-
ule in Figure 2c, LBC partitions the SpTRSV DAG and creates
two s-partitions, i.e., s; and s;. The vertices of SpMV are
scheduled to run in parallel in a separate wavefront ss. This
implementation is not load-balanced since the number of
partitions that can run in parallel differs for each s-partition.
In the LBC joint DAG schedule, the DAGs are first joined
using the dependency information between the two kernels
shown with blue dotted arrows, and then LBC is applied to
create the two s-partitions in Figure 2d. These s-partitions
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are also not load balanced, for example, s, only has one par-
tition. Throughout the paper, load balance for s-partitions
means that each s-partition needs to have balanced work-
loads among its own computations. Sparse fusion uses ICO
to first partition the SpTRSV DAG and then disperses the
SpMV iterations to create load-balanced s-partitions, e.g.,
the two s-partitions in Figure 2e have three closely balanced
partitions.

SpTRSV solves Lx = b to find x, and SpMV performs
y = A = x where L is a sparse lower triangular matrix, A is a
sparse matrix, and x, b, and y are vectors. The LBC joint DAG
schedule interleaves iterations of the two kernels to reuse x.
However, this can compromise spatial locality within each
kernel because the shared data between the two kernels, x, is
smaller than the amount of data used within each kernel, A
and L. With the help of a reuse metric, sparse fusion realizes
the larger data accesses inside each kernel and hence packs
iterations to improve spatial locality within each kernel.

We implement sparse fusion as an embedded domain-
specific library in C++ that takes the specifications of the
sparse kernels as input and generates an efficient and correct
parallel fused code. The primary focus of sparse fusion is to
fuse two sparse kernels where at least one of the kernels has
a loop-carried dependence. We test sparse fusion on six of
the most commonly used sparse kernel combinations in sci-
entific codes, which include kernels such as SpTRSV, SpMV,
incomplete Cholesky, incomplete LU, and diagonal scaling.
We evaluate sparse fusion against unfused and fused imple-
mentations across all symmetric positive definite matrices
larger than 100K nonzero elements from SuiteSparse [15].
Sparse fusion is faster than the best of unfused implemen-
tations using MKL or ParSy by an average factor of 4.2x
and is faster than the best-fused implementations using LBC,
DAGP, and wavefront techniques applied to the joint DAG
by an average factor of 4x. We also use sparse fusion to fuse
more than two loops in the Gauss-Seidel kernel, resulting in
an average speedup of 1.3X and 1.8x compared to ParSy and
the best of Joint-DAG respectively.

2 SPARSE FUSION

Sparse fusion is implemented as an inspector-executor tech-
nique that can be used as a library. The inspector includes
the ICO algorithm and functions that generate its inputs, i.e.
dependency DAGs, reuse ratio, and the dependency matrix.
The executor is the fused code that is created by the fused
transformation.

2.1 Overview

For every kernel pair, sparse fusion generates an inspector
and an executor, such as Listing 1, for the kernels in Fig-
ure 2a. The inspector first builds the inputs to ICO using
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#include "TrsvMv.h"
#include "ICO.h"

void main(){
L.load();A.load();b.load();
/17 Inspector
G1 = SpTRSV.intra_DAG(L);//Sec 2.2

G2 = SpMV.intra_DAG(A);

F = inter_DAG(A,L,b,x,y);//Sec 2.2

reuse_ratio = compute_reuse(A,L,b,x,y); //Sec 2.2
FusedSchedule = ICO(G1,G2,F,r,reuse_ratio); //Sec 3

/77 /77
fused_code(L,b,A,x,y,FusedSchedule,reuse_ratio); //Sec 2.3
3

Executor

Listing 1: Sparse fusion’s driver code.

the functions intra_DAG, inter_DAG, and compute_reuse
in lines 6-8 in Listing 1 and then calls ICO in line 10 to gen-
erate FusedSchedule for r threads. Then the executor code,
fused_code in line 12 in Listing 1, runs in parallel using the
fused schedule. The fused schedule can be reused as long as
the sparsity patterns of A and L do not change.

2.2 The Inspector in Sparse Fusion

The inputs of the ICO algorithm are the dependency matrix
between kernels, the DAG of each kernel, and a reuse ratio.
Sparse fusion analyzes the kernel code to generate inspector
components that create these inputs.

Dependency DAGs: Lines 67 in Figure 1 use an internal
domain-specific library to generate the dependency DAG
of each kernel. General approaches such as the work by
Mohammadi et al. [31] can also be used to generate the
DAGs, however, that would lead to higher inspection times
compared to a domain-specific approach. For example, with
domain knowledge, sparse fusion will use the L matrix as the
SpTRSV DAG G; in Figure 2b. Each nonzero L;; represents a
dependency from iteration i to j.

Matrix inter_DAG(CSR A,CSC L,double *b,double #*x,double *y){
for(i1=0; i1<A.n; i1++){

j1 = 1i1;

if(A.p[j1] < A.p[j1+11 )

F[31].append(il); }

return F;3}
Listing 2: inter_DAG function for the example in
Figure 2a.

Dependency Matrix F:ICO uses the dependency informa-
tion between kernels to create a correct fused schedule. By
running the inter_DAG function, sparse fusion creates this
information and stores it in matrix F. To generate inter_DAG,
sparse fusion finds dependencies between statements of the
two kernels by analyzing the body of the outermost loop
of kernels. Each nonzero F; ; represents a dependency from
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1 if (FusedSchedule.fusion && reuse_ratio < 1){
2 for (every s-partition s){
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1 if (FusedSchedule.fusion && reuse_ratio >= 1){
2 for (every s-partition s){

1 Fuse:for(I1){//loop 1 s #pragma omp parallel for 3 #pragma omp parallel for
PR 1+ for (every w-partition w){ 1+ for (every w-partition w){
s for(In) for(v € FusedSchedule[s] [w].L1){//loop 1 5 for(v € FusedSchedule[s] [w]){
4 x[h(I1,..., In)] = axylg(Il,..., In)]; 6 6 if (v.type == L1){//loop 1
5k 7 for(In) 4 for(In)
¢ Fuse:for(J1){//loop 2 8 x[h(v,...,In)] = axylg(v,...,In)]; 8 x[h(v.id,...,In)] = a*xy[g(v,...,In)];
7. 9 } 9
s for(Jm) 10 for(v € FusedSchedule[s] [w].L2){//loop 2 10 } else {//loop 2
0 z[h’(J1,..., Jm)] = a*xx[g’(J1,..., Jm)]; u 11 for (Jm)
0} 12 for (Jm) 12 z[h’(v.id,...,Jm)] = a*x[g’(v,...,Jm)];
13 z[h’ (v,...,Jm)] a*x[g’ (v,...,Jm)]; 13 }
(a) Before 1 388, (b) After - separated variant 1 i388s (c) After - interleaved variant

Figure 3: The general form of the sparse fusion code transformation with its two variants, interleaved and separated.
I1...Inand J1...Jmrepresent two loop nests. h’ and g’ are data access functions. FusedSchedule contains the
schedule for iterations of loops I1, shown with L1 and J1, shown with L2.

iteration j of the first loop, i.e., column j of F, to iteration i
of the second loop, i.e., row i of F. In Figure 2a, there exists
a read after write (flow) dependency between statements
x[i1] in line 6 and x[j1] in line 11. As a result, sparse fu-
sion generates the function shown in Listing 2. The resulting
F matrix, generated at runtime, is shown in Figure 2b.
Reuse Ratio: ICO uses a reuse ratio based on the memory
access patterns of the kernels to decide whether to improve
locality within kernels or between them. The inspector in
line 9 in Listing 1 computes the reuse ratio metric. The metric

represents the ratio of common to total memory accesses
2#COmMmON Memory access

> max(kernell accesses, kernel2 accesses) *

reuse ratio larger than one, the number of common accesses

between the two kernels is larger than the accesses inside a
kernel. Sparse fusion estimates memory accesses using the
ratio of the size of common variables over the maximum of
the total size of variables among the kernels. For the running
example, the code generated for compute_reuse is 2*x.n /
max(A.size+x.n+y.n,L.size+x.n+b.n). Since x is smaller
than L.size or A.size, the reuse ratio is less than one.

of the two kernels, i.e. For a

2.3 Fused Code

To generate the fused code, a fused transformation is ap-
plied to the two loops at compile-time, and two variants of
the fused code are generated, shown in Figure 3. The trans-
formation variants are separated and interleaved. The fused
code uses the reuse ratio at runtime to select the appropri-
ate variant for the specific input. Figure 3a shows the input
sequential loops, which are annotated with Fuse, and are
transformed to the separated and interleaved code variants
as shown in Figures 3b and 3c, respectively. The separated
variant is selected when the reuse ratio is smaller than one. In
this variant, iterations of one of the loops run consecutively
without checking the loop type. The interleaved variant is
chosen when the reuse ratio is larger than one. In this vari-
ant, iterations of both loops run interleaved, and the variant

checks the loop type for each iteration, as shown in lines 6
and 10 in Figure 3c.

3 ITERATION COMPOSITION AND
ORDERING

Sparse fusion uses the iteration composition and ordering
(ICO) algorithm to create an efficient fused partitioning that
will be used to schedule iterations of the fused code. ICO
partitions vertices of the DAGs of the two input loops to
create parallel load-balanced workloads for all cores while
improving locality within each thread. This section describes
the inputs, output, and three steps of the ICO algorithm
(Algorithm 1) using the running example in Figures 2 and 4.

3.1 Inputs and Output to ICO

The inputs to ICO (shown in Algorithm 1) are two DAGs
G; and G; from the lexicographically first and second input
loops, respectively, and the inter-DAG dependency matrix F
that stores the dependencies between loops. A DAG shown
with G;(V}, Ej, c) has a vertex set V; and an edge set E; and
a non-negative integer weight c(v;) for each vertex v; €
V;. The vertex v; of G; represents iteration i of a loop, and
each edge shows a dependency between two loop iterations.
Therefore, we use vertex and iteration interchangeably and
similarly DAG and loop. ¢(v;) is the computational load of a
loop and is defined as the total number of nonzeros touched
to complete its computation. Other inputs to the algorithm
are the number of requested partitions r, which is set to the
number of cores, and the reuse ratio discussed in section 2.2.

The output of ICO is a fused partitioning V thathasb > 1s-
partitions, each s-partition contains up to k > 1 w-partitions,
where k < r.ICO creates b disjoint s-partitions from vertices
of both DAGs, shown with Vs; where Ui = 0°Vs; = V; U
V2. Each s-partition includes vertices from a lower bound
and upper bound of wavefront numbers shown with s; =
[1b;..ub;) as well as some slack vertices. For each s-partition
Vs, ICO creates m; < k independent w-partitions Vs;, w;
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where Vs;, w; U ... UVs;, wm; = V. Since w-partitions are
independent, they can run in parallel.

Example. In Figure 2b, the SpTRSV DAG G;, the SpMV
DAG Gy, and the inter-DAG dependency matrix F are inputs
to ICO. Other inputs to ICO are r=3 and the reuse,atio. The
fused partitioning shown in Figure 2e has two s-partitions
(b=2). The first s-partition has three w-partitions (m;=3)
shown with V;, = [1,2,3,4]; [5.6,5,6];[7,8,9, 9], where the
underscored vertices belong to Gj.

3.2 The ICO Algorithm

Algorithm 1 shows the ICO algorithm. It takes the inputs
and goes through three steps of (1) vertex partitioning and
partition pairing with the objective to compose iterations of
two loops that can run independently; (2) merging and slack
vertex assignment to reduce synchronization and to balance
workloads; and (3) packing to improve thread locality.

3.2.1  Vertex Partitioning and Partition Pairing. The first step
of ICO partitions one of the input DAGs G; or G,, and then
uses that partitioning to partition the other DAG. The created
partitions are stored in V. Due to inter-DAG dependence,
the number of dependent edges between iterations increases
after fusion, posing challenges to load balancing. For ex-
ample, across the studied kernels in this paper and for all
symmetric positive definite (SPD) matrices with nonzeros
larger than 100K in SuiteSparse [15], the average number
of edges per vertex increases between 0.2—-40% after fusion.
To find independent workloads for threads, ICO ignores the
dependencies across loops and first creates a partitioning
from one of the DAGs with the help of vertex partitioning.
Then the other DAG is partitioned using a partition pair-
ing strategy. The DAG that is partitioned first is the head
DAG and the other is the tail DAG. The joint-DAG does need
to be explicitly created in this two-step process, enabling
scalability.

Vertex partitioning. ICO first selects the DAG with edges as
the head DAG in line 1 in Algorithm 1. Then it uses the LBC
DAG partitioner [10] to construct a partitioning of the head
DAG, Gy, in line 2 of Algorithm 1 by calling the function LBC.
The resulting partitioning has a set of disjoint s-partitions.
Each s-partition contains k disjoint w-partitions which are
balanced using vertex weights. Disjoint w-partitions ensure
all w-partitions within s-partitions are independent. The
created partitions are stored in a two-dimensional list H
using list.

Partition pairing. The algorithm then partitions the tail
DAG using partition pairing. Pair-partitions are self-contained
so that they can execute in parallel if assigned to the same
s-partition. The created partitions are put in the fused par-
titioning V to be used in step two. Pair partitions H;; and
T;; are called self-contained if all reachable vertices from a

SC ’23, November 12-17, 2023, Denver, CO, USA

Algorithm 1: The ICO algorithm.

Input :Gi(Vy,Eq,c1), Go(Va, Ez, ¢2), F, r, reuse_ratio
Output: V

/* (i) Vertex partitioning and partition pairing */
if E; > 0 then Gy, = G; else G, = Gy;

2 [H, k] =LBC(Gp, r)list), T=0,V =0

3 for (every partition H; j) do
4 Tij = BFS(Hi,j, F,Gp)

5 U;,j = Tj,j.remove_uncontained(F)
6 Gp.add(Hi,j, Ti!j, Ui’j)

7 end

[

// Partition pairing

/* (ii) Merging and slacked vertex assignment */
8 S = slack_info(Gp)
9 for (every w-partition pair (w,w’) € Gp.pairs) do
10 ‘ if (SN(w) =0) A (SN(w’) = 0) then Gp.merge(w,w’)
11 end
12 V=Gp,-S§,e=|V|x0.001
13 for (every s-partition V; € V) do
14 S = Vs, balance_with_slack(S, €)
15 if S # 0 then S =V, .assign_even(S)
16 end
/* (iii) Packing */
17 if reuse_ratio > 1 then V.interleaved_pack(F)
18 else V.separated_pack()

breadth-first search (BFS) on Vo € H;; U T;; through vertices
of G; and G, are in H;; U Tj;. Self-contained pair partitions
(Hip, Tip) and (Hyq, Tig) can execute in parallel without syn-
chronization if they are in the same wavefront i. Partitions
that do not satisfy this condition create synchronization in
the final schedule.

Lines 3-7 show the partitioning of the tail DAG by per-
forming a BFS on the dependence matrix, starting from the
head DAG partitioning H. Then in line 5, partition pairing
removes vertices whose dependence is not satisfied by call-
ing the remove_uncontained function. This step ensures
the self-contained condition. Finally, in line 6, the created
partitions are added to the partitioned graph P; where each
vertex of Pg is a partition and edges represent dependence.

Example. Figure 4b shows the output of ICO after the
first step for the inputs in Figure 2b. ICO chooses G; as
the head DAG because it has edges (|E;| > 0), while G,
has no edges. In vertex partitioning, G; is partitioned with
LBC to create up to three w-partitions (because r = 3) per
s-partition. The created partitions are shown in Figure 4a
and are stored in H. The first s-partition Vs is stored in H;.
The three w-partitions of Vs; are indexed with Hy 1, H 2,
and H; 3. Similarly, V;, is stored in Hs. Figure 4b shows the
partitioned graph G,, after partition pairing.

3.2.2 Merging and Slack Vertex Assignment. The second step
of ICO reduces the number of synchronizations by merging
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(a) Step 1-vertex partitioning

(d) Step 2-slacked vertex assignment.

(c) Step 2-merging

Figure 4: Stages of ICO for DAGs G; and G; and matrix F in the running example shown in Figure 2b where the
reuse ratio (reuse_ratio) is smaller than one and number of processors (r) is three. The first step of the algorithm
selects G; and creates H partitioning for three processors as shown in Figure 4a. Then it pairs each H; ; through
dependencies in matrix F to create partitioning T of G, as shown in Figure 4b. The partitions with the same line
pattern/color are pair partitions. In the second step, ICO merges pair partitions that cannot be dispersed such
as first w-partitions of s-partitions 2 and 3 (V, ., and YV, ,,) in Figure 4b. Slack vertices, S, are shown with blue
dotted circles in Figure 4c. Slack vertices are assigned into imbalanced w-partitions as shown in Figure 4d. Since
the reuse ratio is smaller than one, vertices inside each partition are packed separately as shown in Figure 2e.

some of the pair partitions in a merging phase. It also im-
proves load balance by dispersing vertices across partitions
using slack vertex assignment.

Slack definitions. A vertex v can always run in its wave-
front number /(v). However, the execution of vertex v can
sometimes be postponed up to SN (v) wavefronts without-
the need to move its dependent vertices to later wavefronts.
SN (v) is the slack number of v and is defined as SN (v) =
P — l(v) — height(v) where height(v) is the maximum path
from a vertex o to a sink vertex (a sink vertex is a vertex with
no outgoing edge), P is the critical path of G, and I(v) is
the wavefront number of v. A vertex with a positive slack
number is a slack vertex. To compute vertex slack numbers
efficiently, instead of visiting all vertices, ICO iterates over
partitions (G,) and computes the slack number of each parti-
tion in the partitioned DAG, i.e., partition slack number. The
computed slack number for a partition is assigned to all ver-
tices of the partition. As shown in line 8 of Algorithm 1, all
partition slack numbers of G, are computed via slack_info
and are stored in S. For example, since vertices in Vs, ws
can be postponed one wavefront, from s-partition 2 to 3, their
slack number is 1. Vertices in w-partitions Vs, wy and Vi, 4,
cannot be moved because their slack numbers are zero.

Merging. ICO finds pair partitions with partition slack
number of zero and then merges them as shown in lines 9-11.
Since pair partitions are self-contained, merging them does
not affect the correctness of the schedule. Algorithm 1 visits
all pair partitions (w, w’) in G,,.pairs and merges them using
the merge function in line 10 if their slack numbers are zero,
ie, SN(w)=0and SN(w’) = 0.

Slacked vertex assignment. The algorithm then reorders
slacked vertices to approximately load balance the w-partitions
of an s-partition using a cost model. The cost of w-partition

w € Vs; is defined as cost(w) = ), v € we(v). A w-partition
is balanced if its maximal difference is smaller than a thresh-
old €. The maximal difference for a w-partition inside an
s-partition is computed by subtracting its cost from the cost
of the w-partition (from the same s-partition) with the max-
imum cost. ICO first removes all slacked vertices S from
the G, and stores it as fused partitioning V in line 12. It
then goes over every s-partition i and balances Vs; by as-
signing a slacked vertex to its imbalanced w-partition. The
function balance_with_slack in line 14 balances each par-
tition using either a slack vertex of the pair partition or a
slack vertex v; € S from any other partition that satisfies
I(v;) < i < (I(v;) + SN(v)). In line 15, slacked vertices in
S that are not postponed to later s-partitions are evenly di-
vided between the w-partitions of the current s-partition
(Vs;) using the assign_even function.

Example. Figure 4d shows the output of the second step of
ICO from the partitioning in Figure 4b. First, pair partitions
(Vsa, w1, Vs3, wy), shown with red dash-dotted circles in
Figure 4b, are merged because their slack numbers are zero.
The resulting merged partition is shown in Figure 4c. Then
slacked vertex assignment balances the w-partitions in Fig-
ure 4c. The balanced partitions are shown in Figure 4d. The
slacked vertices, S, are shown with dotted blue circles in Fig-
ure 4c. The w-partitions in Vs, are balanced using vertices
of their pair partitions, e.g., the yellow dash-dotted vertices
5 and 6 are moved to w; in Vs; as shown in Figure 4d. The
second strategy in balance_with_slack is used to balance
partitions in Vs,. This is because the slack vertices in S can
execute in either s-partition two or three, since they are from
s-partition one and have a slack number of one, and they are
used to balance the w-partitions in V'sj.
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3.2.3 Packing. The third step of ICO reorders the vertices
inside a w-partition to improve data locality for a thread. The
previous steps of the algorithm create w-partitions that are
composed of vertices of one or both kernels, but the order
of execution is not defined. Using the reuse ratio, the order
in which the nodes in a w-partition should be executed is
determined with a packing strategy. ICO has two packing
strategies: (i) in interleaved packing, the iterations of the two
loops are interleaved to improve temporal locality between
loops and (ii) in separated packing, the vertices of each kernel
are executed separately to benefit from spatial locality within
iterations of a loop. When the reuse ratio is greater than one,
in line 17 of Algorithm 1, the function interleaved_pack
is called to interleave iterations of the two kernels based on
F. Otherwise, separated_pack is called in line 18.

Example. Figure 2e shows the output of ICO’s third step
from the partitioning in Figure 4d. Since the reuse ratio is
smaller than one, separated packing is chosen and V'sz, w;
is stored as Vs,, wy; = [10,11, 10, 11]. Vertices are ordered
to keep dependent iterations of SpTRSV and consecutive
iterations of SpMV next to each other.

3.3 Fusing More than Two Loops

The ICO algorithm processes one loop at a time and thus ef-
ficiently supports the fusion of any number of loops without
the explicit creation of the joint DAG, which can be infea-
sible. For more than two loops, ICO processes their DAGs
in the order they appear in the code. The first two loops are
fused as described in Section 3.2. Partition pairing uses the
final partitioned fused schedule of the previous loop as the
new head and the additional DAG as a tail. In the second
step, ICO finds slacked partitions and applies merging and
slack vertex assignment as described in Section 3.2.2. And
finally, vertices inside each w-partition are sorted based on
ICO packing strategies. It is important to note that sparse
fusion always applies fusion. When fusing loops is not prof-
itable, sparse fusion performance becomes almost identical
to the unfused performance. We will discuss the efficiency
of ICO for more than one loop using a case study in the
experimental results section.

4 EXPERIMENTAL RESULTS

We compare the performance of sparse fusion to MKL [46]
and ParSy [10], two state-of-the-art tools that accelerate
individual sparse kernels, which we call unfused implemen-
tations. Sparse fusion is also compared to the three fused
implementations that we create. To our knowledge, sparse
fusion is the first work that provides a fused implementation
of sparse kernels where at least one kernel has loop-carried
dependencies. For comparison, we also create three fused
implementations of sparse kernels by applying LBC, DAGP,
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and a wavefront technique to the joint DAG of the two input
sparse kernels and creating a schedule for execution using
the created partitioning. The methods will be referred to as
fused LBC, fused DAGP, and fused wavefront, respectively.

4.1 Setup.

All symmetric positive definite matrices larger than 100K
nonzeros from [15] are used for experimental results. The
matrix values are real and stored in double precision. The
test-bed architecture is a multicore processor with 20 Intel
CascadeLake cores at 2.5 GHz with 33 MB L3 Cache. All
generated codes, implementations of different approaches,
and library drivers are compiled with GCC v.11.3.0 compiler
and with the -03 flag. Each thread is pinned to a physical
core and a close thread binding is selected. Matrices are first
reordered with METIS [25] to improve thread parallelism.

We compare sparse fusion with two unfused implemen-
tations where each kernel is optimized separately: I ParSy
applies LBC to DAGs that have edges. For parallel loops,
the method runs all iterations in parallel. LBC is developed
for L-factors [14] or chordal DAGs. Thus, we make DAGs
chordal before using LBC. II. MKL uses Intel MKL [46] rou-
tines with MKL 2021.1.0 and calls them separately for each
kernel. We use the inspector executor version of MKL by call-
ing mkl_sparse_set_sv_hint, mkl_sparse_set_mv_hint,
and mk1_sparse_optimize for inspection. For the executor
of SpTRSV, SpMV, and SpILUO we use mkl_sparse_d_trsv,
mkl_sparse_d_mv, and dcsrilu@, respectively.

Sparse fusion is also compared to three fused approaches,
all of which take as input the joint DAG; the joint DAG is
created by combining the DAGs of the input kernels using
the inter-DAG dependency matrix F. We then implement
three approaches to build the fused schedule from the joint
DAG: I Fused wavefront traverses the joint DAG in topologi-
cal order and builds a list of wavefronts that show vertices
of both DAGs that can run in parallel. II. Fused LBC applies
the LBC algorithm to the joint DAG and creates a set of
s-partitions, each composed of independent w-partitions.
LBC is taken from ParSy and its parameters are tuned for
best performance. We use 4 for initial_cut and 400 for
coarsening_factor. IIl. Fused DAGP applies the DAGP par-
titioning algorithm to the joint DAG and then executes all
independent partitions that are in the same wavefront in
parallel. DAGP is used with METIS for its initial partitioning,
with one run (runs=1), and the remaining parameters are set
to default. All fused approaches use sparse fusion packing.

The list of sparse kernel combinations investigated is in Ta-
ble 1. To demonstrate sparse fusion’s capabilities, the sparse
kernels are selected with different combinations of storage
formats, i.e., CSR and compressed sparse column (CSC) stor-
age, different combinations of parallel loops and loops with
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Table 1: The list of kernel combinations. CD: loops with carried dependencies, SpICO0: Sparse Incomplete Cholesky
with zero fill-in, SpILUO: Sparse Incomplete LU with zero fill-in, DSCAL: scaling rows and columns of a sparse

matrix.
ID Kernel combination Operations Dependency DAGs Reuse Ratio
1 SpTRSV CSR - SpTRSV CSR x=L"lyz=1"x CD-CD — e o
2 DSCAL CSR - SpILU0 CSR LU ~ DAD" Parallel - CD Ty 2 1
3 SpTRSV CSR - SpMV CSC y=L"'x,z=Ay CD - Parallel max (o +si3:L Szearzn) < 1
4 SpICO CSC - SpTRSV CSC LT~ Ay=L""x CD - CD Gy 2 1
5 SpILUO CSR - SpTRSV CSR LU~Ay=L"x CD-CD —— =
6 DSCAL CSC - SpIC0 CSC LLT ~ DADT Parallel - CD e ey 2 1
O  Sparse Fusion X  Best-Unfused (ParSy and MKL) »  Best-Fused Joint-DAG (Wavefront, LBC, and DAGP)
151 TRSV-TRsV ° 151 pAD-ILUO 151 TRsv-Mv
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Figure 5: Performance of different implementations shown in GFLOPs per second.

carried dependencies, and a variety of memory access pattern
behaviour. For example, combinations of SpTRSV, Lx = b
and SpMV are main bottlenecks in conjugate gradient meth-
ods [4, 52], GMRES [11], Gauss-Seidel [32]. Preconditioned
Krylov methods [20] and Newton solvers [35] frequently use
kernel combinations 3, 5, 6, 7. The s-step Krylov solvers [6]
and s-step optimization methods used in machine learning
[35] provide even more opportunities to interleave iterations.
Thus, they use these kernel combinations significantly more
than their classic formulations.

4.2 Sparse Fusion Performance.

Figure 5 shows the performance of the fused code from sparse
fusion, the best-unfused implementation from ParSy and
MKL, and the best-fused wavefront, fused LBC, and fused
DAGP implementations. We report the minimum execution
time of ParSy and MKL per matrix for each unfused data
point in Figure 5. For each fused data point in Figure 5, we

report the minimum execution time of fused wavefront, fused
LBC, and fused DAGP per each matrix. The performance of
implementations is shown in floating point operations per
second (GFLOP/s). The theoretical floating point operations
are computed per kernel combination and matrix and used
for all implementations. Sparse fusion is on average 4.2x and
4x faster than the best unfused and fused implementations,
respectively. For all kernel combinations and matrices shown
in Figure 5, sparse fusion provides the fastest execution time
in 76% of instances compared to the best fused and unfused
implementations. Even though sparse fusion is on average
11.5% faster than MKL for ILU0O-TRSV, since ILUO only has
a sequential implementation in MKL, the speedup of this
kernel combination is excluded from the average speedups.

Locality in Sparse Fusion. The efficiency of the reuse ratio
differs per kernel properties. Kernel combinations 1, 2, 4, 5,
and 6 share the sparse matrix L and thus have a reuse ratio
larger than one, while combination 3 only shares vector y,
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leading to a reuse ratio lower than one. The selected packing
strategy in sparse fusion improves the performance in 88%
of kernel combinations and matrices and provides a 1-3.9x
improvement in both categories. The highest improvement
belongs to kernel combination 1, where accessing L values
dominates the execution time, and reusing them after in-
terleaved packing always leads to improvement. In kernel
combinations including SpILUO and SpICO, the effect is lower
since the accesses are more irregular than the rest.

Figure 6 top shows the average memory access latency [21]
of sparse fusion, the fastest unfused implementation (ParSy),
and the fastest fused partitioning-based implementation (Fused
LBC) for all kernel combinations normalized over the ParSy
average memory access latency (shown for matrix bone010
as an example, other matrices exhibit similar behavior). The
average memory access latency is used as a proxy for locality
and is computed using the number of accesses to L1, LLC,
and TLB measured with PAPI performance counters [42].

For kernels 1, 2, 4, 5, and 6 where the reuse ratio is larger
than one, the memory access latency of ParSy is on average
1.3% larger than that of sparse fusion. Because of their high
reuse ratio, these kernels benefit from optimizing locality be-
tween kernels made possible via interleaved packing. ParSy
optimizes locality in each kernel individually. When applied
to the joint DAG, LBC can potentially improve the temporal
locality between kernels and thus there is only a small gap
between the memory access latency of sparse fusion and
that of fused LBC. For kernel combination 3 where the reuse
ratio is smaller than one, the gap between the memory access
latency of sparse fusion and fused LBC is larger than the
gap between the memory access latency of sparse fusion and
ParSy. Sparse fusion and ParSy both improve data locality
within each kernel for these kernel combinations.

Load Balance and Synchronization in Sparse Fusion. Figure 6
bottom shows the OpenMP potential gain [34] of sparse
fusion, ParSy, and Fused LBC for all kernel combinations
normalized over ParSy’s potential gain (shown for matrix
bone010 as an example). The OpenMP potential gain is a met-
ric in Vtune [53] that shows the total parallelism overhead,
e.g., wait-time due to load imbalance and synchronization
overhead, divided by the number of threads. This metric is
used to measure the load imbalance and synchronization
overhead in ParSy, fused LBC, and sparse fusion.

Kernel combination 3 has slack vertices that provide oppor-
tunities to balance workloads. For example, for the studied
matrices, between 39-82% of vertices can be slacked, thus
the potential gain balance of ParSy is 1.6X larger than that of
sparse fusion and 2.4x lower than that of fused LBC. ParSy
can only improve load balance using the workloads of an
individual kernel. As shown in Figure 1, for kernel combina-
tion 4, the joint DAG has a small number of parallel iterations
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Figure 6: Average memory access latency (top) and the
OpenMP potential gain (bottom) for matrix bone010.
The legends show the implementation, values are nor-
malized over ParSy.

in the final wavefronts that makes the final s-partitions of
the LBC fused implementation imbalanced (a similar trend
exists for kernel combination 5). For these kernel combina-
tions, the code from sparse fusion has on average 33% fewer
synchronization barriers compared to ParSy due to merging.
For kernel combinations 1, 2, 3, and 6, the potential gain
in sparse fusion is 1.3X less than that of ParSy. Merging in
sparse fusion reduces the number of synchronizations in the
fused code on average by 50% compared to that of ParSy. The
sparsity pattern of matrices has a direct influence on thread
parallelism. To ensure sufficient parallel iterations, all matri-
ces are reordered with METIS, which also allows different
schedulers to enhance the load balance. The exploration of
techniques that do not rely on METIS is a topic for future
work.

Inspector Time. Figure 7 shows the number of times that the
executor should run to amortize the cost of inspection for
implementations that have an inspector. For space reasons,
only combinations 3 and 5 are shown, others follow the same
trend. The number of executor runs (NER) that amortize the
cost of inspector for an implementation is calculated using
Baselinel}lfrﬁ Ec_mgxzum;r 75—+ The baseline time is obtained by
running each kernel individually with a sequential imple-
mentation, and the inspector and executor times belong to
the specific implementation. When NER is negative, it means
the inspector is not amortized in that tool. The fused LBC im-
plementation has a NER of 3.1-745. The high inspection time
is because of the high cost of converting the joint DAG into a
chordal DAG, typically consuming 64% of its inspection time.
The NER of the fused DAGP implementation is either nega-
tive or higher than 80. The fused wavefront implementation
sometimes has a negative NER because the executor time
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Figure 7: The number of executor runs to amortize
inspector cost. Values are clipped between -10 and 30.
(lower and positive values are better)

is slower than the baseline time. As shown, sparse fusion,
MKL, and ParSy have the lowest NER among all implemen-
tations. Sparse fusion’s low inspection time is due to pairing
strategies that enable partitioning one DAG at a time. Ker-
nel combinations such as SpICO-TRSV and SpILUO-TRSV
only need one iteration to amortize the inspection time and
SpTRSV-SpMV, SpTRSV-SpTRSV, and SpMV-SpTRSV need
between 11-50 iterations. Sparse kernel combinations are
routinely used in iterative solvers in scientific applications.
Even with preconditioning, these solvers typically converge
to an accurate solution after tens of thousands of iterations
[4, 11, 27], hence amortizing the overhead of inspection.

Figure 8 compares the performance of two DAG partition-
ers, DAGP and LBC, for different sizes of sparse DAGs to
demonstrate the expensive inspection time of fused joint-
DAG implementations in Figure 7. In the one-DAG config-
uration, the DAG partitioner partitions the DAG of sparse
triangular solve (SpTRSV) CSR. In the joint DAG configu-
ration, the DAG partitioner partitions the joint DAG of the
sparse matrix-vector multiplication (SpMV) CSR and SpTRSV
CSR. To compare the joint DAG configuration with the one-
DAG configuration, the x-axis shows the number of edges
in one of the DAGs, i.e., SpTRSV DAG. The number of edges
in the joint DAG is three times the number of edges in the
SpTRSV DAG. As shown in Figure 8, DAGP in both one-DAG
and joint-DAG configurations is slower than LBC for both
small and large-size DAGs. Also, DAGP on the joint DAG
runs out of memory for the last seven large DAGs (hence
not shown in the figure).

4.3 Sparse Fusion Extension

We discuss the potential for sparse fusion when fusing more
than two loops and parallel loops.

Gauss-Seidel, a case study for fusing more than two loops.
To demonstrate the efficiency of sparse fusion in merging
more than two loops, we use Gauss-Seidel (GS) [32] as an
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Figure 8: Performance of DAGP and LBC DAG parti-
tioners for DAGs with different number of edges in an
individual and joint DAG from fusing SpTRSV with
SpMYV kernels (lower is better)
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Figure 9: Performance of Guass-Seidel (GS) using un-
fused (GS ParSy) and fused implementations, i.e. sparse
fusion (GS Sparse Fusion) and best of joint DAG meth-
ods (GS Joint-DAG) for matrices of different nonzeros.
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end-to-end case study. GS iteratively solves for the unknown
vector x in Ax = b where A is a sparse symmetric matrix
stored in a CSR format, and b is a vector. We specifically use
backward GS [32] that in its i*" iteration updates the solution
by computing (D — F)x;4; = Ex; + b where D, F, and E are
diagonal, lower triangular, and upper triangular matrices
with a decomposition of A = D — F — E, respectively. Each
iteration of GS computes an SpMV followed by SpTRSV. By
unrolling the outermost loop of GS, Sparse Fusion has the
opportunity to fuse more than two loops, e.g., unrolling one
iteration exposes four kernels/loops for fusion; unrolling
loops of iterative solvers for performance is a commonly
used approach, e.g., s-step solvers [6].

The choice of SPD matrices guarantees convergence in GS.
The linear system corresponding to each matrix is solved for
either the accuracy threshold of 107¢ or the most accurate
solution after 1000 iterations. To detect profitable loops for
sparse fusion and joint-DAG approaches, we exhaustively
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Figure 10: Performance of fused SpMV-SpMYV in sparse
fusion compared with the unfused MKL performance

search for a fusion of 2—-6 loops and select the fastest code.
Figure 9 compares the performance of GS using sparse fusion
(GS Sparse Fusion), ParSy (GS ParSy), and the best of joint-
DAG implementations (GS Joint-DAG) for all the selected
matrices. In more than 96% of the matrices, GS-Sparse-Fusion
is faster than GS ParSy and GS joint-DAG. GS Sparse Fusion
also provides an average speedup of 1.3x and 1.8X over GS
ParSy and GS Joint-DAG, respectively, demonstrating the
efficiency of sparse fusion when fusing more than two loops
to accelerate iterative solvers. We also found that fusing more
than 6 loops does not lead to improvement. In the reported
execution times for sparse fusion in Figure 9, 37%, 8%, and
55% of data points are obtained from fusing two, four, and six
loops respectively. This indicates the value of fusing more
than two loops in iterative solvers.

Fusing parallel loops. While sparse fusion and ICO are de-
signed for loops with carried dependence, they can also
be used to fuse parallel loops, such as the sparse matrix-
vector product (SpMV) with SpMV. Figure 10 compares the
performance of fused SpMV-SpMV with the unfused MKL
implementation. As shown, sparse fusion provides an aver-
age speedup of 1.18x over MKL. The sparse fusion imple-
mentation does not benefit from vector instructions, while
MKL is a highly-optimized code. Sparse fusion focuses on
thread parallelism and improves zero-stride (temporal local-
ity) and unit-stride (spatial locality), potentially improving
vectorization when combined with existing vectorization
techniques [8, 47] for sparse matrix kernels.

5 RELATED WORK

Parallel implementations of individual sparse matrix ker-
nels exist in both highly-optimized libraries [22, 29] and
compiler frameworks [2, 9, 31, 40, 48]. High-performance
sparse libraries optimize a sparse kernel such as [43, 45, 49]
optimizes SpTRSV, [3, 28] optimizes SpMV, and MKL [46]
contains optimized versions of several sparse kernels individ-
ually. Compiler frameworks such as Sympiler [7, 9, 12] and
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sparse polyhedral framework [40] also provide techniques
to optimize a sparse kernel with loop-carried dependence.
These libraries and frameworks provide an efficient imple-
mentation for their supported sparse kernels.

Inspector-executor frameworks commonly use wavefront
parallelism [19, 44] to parallelize sparse matrix computations
with loop-carried dependencies. Recently, task coarsening
approaches such as LBC [10], HDagg [50] and DAGP [23]
coarsen wavefronts and thus generate code that is optimized
for parallelism, load balance, and locality. While available
approaches can provide efficient optimizations for sparse
kernels with or without loop-carried dependencies, they can
only optimize sparse kernels individually.

A number of libraries and compiler frameworks provide
parallel implementations of fused sparse kernels with no
loop-carried dependencies, such as tensor multiplication ker-
nels in ReACT [51] and SparseLNR [17], two or more SpMV
kernels [24, 30] or SpMV and dot products [1, 16, 18]. The for-
mulation of s-step Krylov solvers [6] has enabled iterations of
iterative solvers to be interleaved and hence multiple SpMV
kernels are optimized simultaneously by replicating com-
putations to minimize communication costs [24, 30]. Sparse
tiling [37-39, 41] is an inspector executor approach that uses
manually written inspectors [37, 39] to group iterations of
different loops of a specific kernel such as Gauss-Seidel [39]
and Moldyn [37] and is generalized for parallel loops with-
out loop-carried dependencies [41]. Sparse fusion optimizes
combinations of sparse kernels where at least one of the
kernels has loop-carried dependencies.

6 CONCLUSION

We present sparse fusion and demonstrate how it improves
parallelism, load balance, and data locality in sparse matrix
combinations compared to when sparse kernels are opti-
mized separately. Sparse fusion inspects the DAGs of the
input sparse kernels and uses the ICO algorithm to balance
the workload between wavefronts and determine whether to
optimize data locality within or between the kernels. Sparse
fusion’s generated code outperforms state-of-the-art imple-
mentations for sparse matrix optimizations. In future work,
we plan to investigate strategies that enable sparse fusion
for arbitrary sparse operations.
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