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Abstract—In this work, we describe ParSy, a framework
that uses a novel inspection strategy along with a simple code
transformation to optimize parallel sparse algorithms for shared
memory processors. Unlike existing approaches that can suffer
from load imbalance and excessive synchronization, ParSy uses a
novel task coarsening strategy to create well-balanced tasks that
can execute in parallel, while maintaining locality of memory
accesses. Code using the ParSy inspector and transformation
outperforms existing highly-optimized sparse matrix algorithms
such as Cholesky factorization on multi-core processors with
speedups of 2.8× and 3.1× over the MKL Pardiso and PaStiX
libraries respectively.

Index Terms—Parallel algorithms, matrix computations, loop
transformations, domain-specific code generation.

I. INTRODUCTION

Sparse matrix computations are an important class of
algorithms frequently used in scientific simulations. The
performance of these simulations relies heavily on the parallel
implementations of sparse matrix computations used to solve
systems of linear equations. Data dependence information re-
quired for parallelizing sparse codes is dependent on the matrix
structure, so parallel codes may use more synchronization
than necessary; in addition, to achieve high parallel efficiency,
the work must be evenly distributed among cores, but this
distribution also depends on the matrix structure.

Parallel sparse libraries, such as Intel’s Math Kernel Library
(MKL) [56], Pardiso [56], [47], PaStiX [23], and SuperLU [32],
provide manually-optimized parallel implementations of sparse
matrix algorithms and are some of the most commonly-used
libraries in simulations using sparse matrices. These libraries
differ in the kind of numerical methods they support and use
numerical-method-specific code at runtime, during a phase
called symbolic factorization, to determine data dependencies.
Based on this dependence information, different libraries
implement different forms of parallelism. For example, PaStiX
uses static scheduling of a fine-grained task graph based on
empirical measurements of expected runtime for each task;
in contrast, MKL Pardiso implements a form of dynamic
scheduling for its fine-grained task graph.

Previous work has extended compilers to resolve memory
access patterns in sparse codes by building runtime inspectors to
examine the nonzero structure and using executors to transform
code execution and implement parallelism [54], [45], [59].

Inspectors use runtime information to build directed acyclic
graphs (DAGs) that expose data dependence relations. The
DAGs are traversed in topological order to create a list of level
sets that represent iterations that can execute in parallel; this is
known as wavefront parallelism. Synchronization between level
sets ensures the execution respects data dependencies. However,
synchronization between levels in wavefront parallelism can
lead to high overheads since the number of levels increases with
the DAG critical path. For sparse kernels such as Cholesky with
non-uniform workloads, wavefront methods can additionally
lead to load imbalance. Frameworks such as Sympiler [9]
have demonstrated the value of creating specializations of
sparse matrix methods for exploiting specific matrix structure.
However, this approach has only been demonstrated for single-
threaded implementations.

In this work, we present an inspection strategy for parallelism
on multi-core architectures for sparse matrix kernels. Our
proposed inspector applies a novel Load-Balanced Level
Coarsening (LBC) algorithm on the data dependence graph to
create well-balanced coarsened level sets, which we call the
hierarchical level set (H-Level set), mitigating load imbalance
and excessive synchronization present in wavefront parallelism.
This inspector is implemented in a framework called ParSy,
which uses information from the matrix sparsity and the
numerical method to obtain data dependencies. The inspector in
ParSy can be used for sparse linear algebra libraries, inspector-
executor compiler methods, or from within sparsity-specific
code generators such as Sympiler.

We focus on complex sparse matrix algorithms where
loop-carried data dependencies make efficient parallelization
challenging, such as sparse triangular solve, as well as matrix
methods that introduce fill-ins (nonzeros) during computation,
such as Cholesky. The main contributions of this work include:
• A new Load-Balanced Level Coarsening (LBC) strategy that

inspects sparse kernel data dependence graphs for parallelism
while maintaining an efficient trade-off between locality,
load balance, and parallelism by coarsening level sets from
wavefront parallelism.

• A novel proportional cost model included in LBC that creates
well-balanced partitions for sparse kernels with irregular
computations such as sparse Cholesky.

• Implementations of the new inspection strategies for paral-
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(a) Assembly Tree G(V,E) (b) H-Level set of G

Fig. 1: An example DAG, that is an assembly tree where nodes represent column blocks and edges show the dependencies
between columns during factorization, is shown in Figure 1a. Wavefront methods create a level set, represented by node coloring;
nodes with the same color can be executed in parallel. Figure 1b shows the H-Level set created by LBC from G in Figure 1a.

lelism and code transformations for sparse triangular solve
and Cholesky factorization, in a framework called ParSy.
For evaluation, the proposed implementations are built
within the open-source Sympiler infrastructure, but with all
Sympiler optimizations disabled. The performance of ParSy
is evaluated against MKL Pardiso and PaStiX, demonstrating
that the partitioning strategy in ParSy outperforms the state-
of-the-art by 1.4× on average and up to 3.1×.

II. PARSY OVERVIEW

ParSy consists of the H-Level inspector and code transfor-
mations to enable efficient parallel execution for sparse matrix
methods. Example input code to ParSy is shown in Listing 1,
where the user provides the numerical method, matrix sparsity
pattern, and additional information about the desired level of
parallelism. ParSy builds a DAG representing data dependencies
in the sparse kernel for the given sparsity pattern. Then, the
H-Level inspector uses a Load-Balanced Level Coarsening
algorithm to create a schedule from the DAG of the kernel.
To parallelize the original code and take advantage of the
schedule, the numerical method code must be transformed.
This section describes the H-Level inspector and discusses
code transformations to support the parallel schedule, using
sparse Cholesky as an example.

int main() {
Sparse A(type(float,64),"Matrix.mtx");
Cholesky chol(A);
chol.generate_c("chol",k); }

Listing 1: ParSy input code

A. H-Level Inspector

The goal of ParSy’s inspector is to statically partition the
DAG of a specific numerical method applied to a specific
sparse matrix while creating an efficient load balance with low
synchronization cost and high locality. Wavefront parallelism
approaches [31], [38], typically used in code transformation

Algorithm 1: ParSy’s H-Level inspector.
Input : DAG G, k, thresh, win, agg
Output : H-LevelSet

1 [vertexCost,edgeCost] = computeCost(G)
2 [H-LevelSet]=LBC(G,vertexCost,edgeCost, k, thresh, win, agg)
3 return H-LevelSet

frameworks to generate parallel sparse codes, can create load
imbalance and excessive synchronizations since sparse kernels
like Cholesky have imbalanced workloads for column-based
and column-block-based implementations. ParSy’s H-Level
inspector resolves this issue by creating partitions with coarser
tasks while ensuring good balance between execution threads.

Algorithm 1 shows the basic outline of ParSy’s inspector.
Line 2 shows the LBC phase (see Section III), where the DAG
along with the number of processor cores (k in Algorithm 1),
the computational efficiency of a single core (thresh), and
tuning parameters win and agg related to balancing and
coarsening of the levels, are the inputs. The LBC algorithm
uses a kernel-specific cost model for vertices and edges, which
is used for load balance. With this information the DAG
is partitioned into l-partitions that partition the DAG into
coarsened levels, and into k or fewer w-partitions each executed
on a single core within each l-partition.

Example. Cholesky factorization is commonly used in
direct linear solvers and to precondition iterative solvers. The
algorithm factors a Hermitian positive definite matrix A into
LLT , where matrix L is a sparse lower triangular matrix. We
use the left-looking Cholesky variant. To compute the factor
for a column j in L the algorithm visits all columns i that
contain a nonzero in row j of L with i < j and then applies
the contributions of columns i to column j [11]. Dependencies
between each column-computing iteration are represented by
a DAG called the elimination tree (etree) [34], [42]. In an
etree each node represents a column and each directed edge



1 H-Level:

2 for (int i=0; i<blockNo; ++i){

3 b1 = block2col[i]; b2 = block2col[i+1];

4 f = A(:,b1:b2);

5 // Update phase

6 for(block r=0 to i-1 L(i,r)!=0){
7 f-=GEMM(L(b1:n,r),transpose(L(i,r)));}
8 // Diagonal operation

9 L(b1:b2,b1:b2)=POTRF(f(b1:b2));

10 // Off-diagonal operations

11 for(off-diagonal elements in f){
12 L(b2+1:n,b1:b1) =

13 TRSM(f(b1+1:n,b1:b2),L(b1:b2,b1:b2)); } }

(a) Serial blocked left-looking Cholesky

1 for(every l-partition i){
2 #pragma omp parallel for private(f){

3 for(every w-partition j){
4 for(every v ∈ HLevelSet[i][j]){

5 int i = v;
6 b1 = block2col[i];b2 = block2col[i+1];

7 f = A(:,b1:b2);

8 for(block r=0 to i-1 L(i,r)!=0){
9 f-=GEMM(L(b1:n,r),transpose(L(i,r)));}

10 L(b1:b2,b1:b2)=POTRF(f(b1:b2));

11 for(off-diagonal elements in f){
12 L(b2+1:n,b1:b1) =

13 TRSM(f(b1+1:n,b1:b2),L(b1:b2,b1:b2)); } }}}}

14 //Specilized code for the last l-partition.
15 Cholesky_Specialized(HLevelSet[n− 1][0]);

(b) ParSy’s generated code

Fig. 2: The application of the H-Level transformation on blocked left-looking Cholesky factorization. Figure 2b shows the
transformed version of the code in Figure 2a with the H-Level transformation. The gray lines remain unchanged.

denotes that the destination depends on the source. To improve
the performance of sparse Cholesky by using dense BLAS
operations, columns with similar nonzero patterns are merged to
form a block or supernode of columns. Dependencies between
column blocks are represented using a modified version of the
etree called the assembly tree, where nodes represent column
blocks. For Cholesky factorization, using the etree does not
create coarse enough nodes to parallelize and thus in most
available software [15], [23], [48], [3] the assembly tree is
used as the baseline dependency DAG for Cholesky. Figure 1a
is an example assembly tree that we will use to demonstrate
how ParSy creates an H-Level set.

Wavefront parallelism techniques [54], [45] first create a
topologically-ordered level set, shown in Figure 1a and then
execute nodes within each level in parallel. However, this often
leads to higher-than-necessary overhead, because it requires
synchronization between each level. Furthermore, the work
per node varies depending on the non-zero structure, often
resulting in poor load balance. Our Load-Balanced Level
Coarsening (LBC) algorithm, described in Section III, partitions
the assembly tree with the objective of facilitating efficient
parallel execution while producing a good balance between
load and locality. Our partitioning works in two stages; the first
partitions the DAG by level to create topologically-ordered
l-partitions, shown in Figure 1b. In the second phase, the
disjoint sub-DAGs inside each level are divided into k or fewer
equally-balanced w-partitions, where k is the number of cores.
The H-Level set improves locality compared to the wavefront
approach and reduces inter-level synchronizations from six
to two for this example. Furthermore, the LBC algorithm
balances the workload of each partition by packing multiple
independent sub-DAGs into each w-partition. This packing
approach is important in sparse Cholesky where the workload
for each column block differs from other blocks. Finally, each
w-partition does not communicate with any other w-partition
in the same level, since each w-partition consists of disjoint
sub-DAGs.

B. Parallel Code Transformation

To utilize the H-Level set to efficiently execute the schedule,
the original code must be transformed for parallelism. Figure 2
shows how the H-Level transformation modifies Cholesky
factorization1. As shown, the outermost loop in line 2 of
Figure 2a is transformed to lines 1–5 in Figure 2b. Since
in the left-looking Cholesky algorithm nodes do not write to
other nodes, the loop body does not change because no critical
region is required. The OpenMP pragma enables parallelism
over sub-DAGs, executing dependent nodes within the same
thread, which increases locality. For the example DAG in
Figure 1a, the outer loop in the code of Figure 2b executes only
one iteration, resulting in a single synchronization, compared
to the six synchronizations required by wavefront parallelism.

The available parallelism in a sparse algorithm is not
uniform and typically different approaches for parallelism
must be used to efficiently exploit the underlying parallel
architecture. For example, l-partition 1 in the partitioned DAG
in Figure 1b benefits from tree parallelism; however, the nodes
in l-partition 2, which contains the sync node (the node with
no outgoing edges), have no tree parallelism but such nodes
can be repartitioned to increase data parallelism within their
corresponding dense computations [23]. The last iteration,
which corresponds to the last partition of the H-Level set,
is peeled and optimized differently. For such nodes, ParSy
enables using parallel BLAS operations for the node; however,
ParSy can be extended to support more advanced specialization
techniques such as repartitioning.

C. Implementation

We have implemented ParSy in the open-source Sympiler [9]
framework. Even though ParSy can be implemented at runtime
similar to library-based approaches, we build on top of Sympiler
to ease implementation and for potential future benefits of
integrating ParSy with sparsity-specific code generation from

1For space, we provide the general form of the transformation in Appendix A.



Sympiler. Because of using Sympiler, the inspectors in ParSy
are executed at compile time and their information is used to
automatically transform the code. The following provides a
short overview of the Sympiler framework and illustrates how
ParSy is implemented using Sympiler.

Overview of Sympiler. Sympiler is a domain-specific com-
piler that generates specialized code for sparse matrix methods
on single-core architectures. Given the numerical method and
input matrix stored in compressed sparse column (CSC) format,
Sympiler uses a symbolic inspector to generate inspection
sets to guide code transformations. The numerical solver is
internally represented using a domain-specific abstract syntax
tree (AST) and is annotated with potential transformations.
The lowered code is also annotated with hints for low-level
transformations which are used in the transformation phase
for sparsity-specific code specialization. In the transformation
phase, the inspection sets are used to lower the annotated code
to apply inspector-guided and low-level transformations and
output transformed C source code.

To implement ParSy, the inputs to Sympiler are extended to
provide information that the H-Level inspector requires. The
H-Level inspector and H-Level transformation are implemented
as additional stages in the inspection and transformation
phases of Sympiler respectively. The inspector creates the data
dependence graph based on the input numerical method and
the sparsity pattern. ParSy uses the created data dependence
graph and creates a coarsened level set that will later be
used as an input to the generated code. Sympiler’s low-level
transformations are disabled in the current version of ParSy,
so we do not specialize code for a specific sparsity pattern; we
intend to explore this feature in future releases of ParSy. This
paper considers solely the impact of the H-Level inspector.

III. LOAD-BALANCED LEVEL COARSENING (LBC)

ParSy utilizes the Load-Balanced Level Coarsening (LBC)
algorithm to partition the DAG that describes the dependencies
of the computation. LBC statically creates a set of partitions that
minimize load imbalance and communication while attempting
to maximize available parallelism and locality. In this section,
we describe the partitioning produced by LBC, its associated
constraints, and the algorithm that produces this partitioning.
Finally, we show the proportional cost model used by LBC to
estimate load costs for each partition.

A. Problem Definition

The goal of Load-Balanced Level Coarsening is to find a
set of l-partitions, and within each l-partition, to find a set
of disjoint w-partitions with as balanced cost as possible. For
improved performance, these partitions adhere to additional
constraints to reduce synchronization between threads and
maintain load balance. Additionally, there are objective func-
tions for minimizing communication between threads and the
number of synchronizations between levels. To describe the
partitioning and constraints, we use the following notation.

Definitions. G(V,E) denotes the input DAG with vertex set
V and edge set E, along with a nonnegative integer weight

d(v) for each vertex v ∈ V and nonnegative integer weight
c(e) for each edge e ∈ E. The level of a node level(v) is the
length of the longest path between the node v and a source
node, which is a node with no incoming edge. The level of
the sync node is critical path P ; in the case of multiple sync
nodes, P is the maximal level among all sync nodes.

Definition 1: Given DAG G and an integer number of
partitions n > 1, the LBC algorithm produces n l-partitions of
V with sets of nodes (Vl1 , ..., Vln) such that Vl1 ∪ ...∪Vln = V
and ∀i 6= j, Vli ∩ Vlj = ∅. Each l-partition li = [lbi..ubi] is
represented by a lower bound and upper bound on the level,
and contains all nodes with levels between the two bounds. In
addition, ∪ni=1li = [1..P ]. The induced DAG for l-partition li
is represented with Glbi:ubi .

Definition 2: Given the number of threads k > 1, for each set
of nodes Vli , the LBC algorithm produces mi ≤ k w-partitions
(Vli,w1

, ..., Vli,wm
) such that Vli,w1

∪ ... ∪ Vli,wmi
= Vli and

∀i, j, p, q, where i 6= j or p 6= q, Vli,wp
∩ Vlj ,wq

= ∅.
Definition 3: Within a partition, the number of connected

components is the number of disjoint sub-DAGs in the partition,
which is shown by comp(Vli,wp

) for a partition Vli,wp
.

In summary, the partitioning produced by LBC creates
l-partitions, and within each l-partition i, it creates up to
k disjoint w-partitions. Each node in the DAG belongs
to one l-partition and one w-partition. Note that some l-
partitions, those with only one connected component, will
only contain one w-partition (see Vl2 in Figure 1). Some of
the values for that example are as follows: n = 2, Vl1 =
{{1, 2, 3, 4, 5}, {6, 7, 8}, {10, 11, 9, 12}}, Vl1,w2 = {6, 7, 8},
and Vl2 = {{13, 14, 15}}. The number of w-partitions for
Vl1 is m1 = 3, and m2 = 1 for Vl2 . The number of connected
components in l-partition Vli is shown with comp(Vli). For
example, comp(Vl1,w1

) is 2, comp(Vl1,w2
) is 1, etc.

Constraints. The space-partition constraint ensures that
threads executing iterations in different w-partitions need not
synchronize amongst each other. The name of this constraint
comes from affine partitioning [33], where the goal of the
constraint is the same; however, the constraint definition is
different here since the input is a DAG. If E(Vli,wp

, Vli,wq
) is

the set of cut edges between two partitions Vli,wp and Vli,wq ,
the space-partition constraint is:

∀1 ≤ i ≤ n ∧ (1 ≤ p, q ≤ mi), E(Vli,wp , Vli,wq ) = ∅ (1)

The w-partitions within each Vlj must have no edges in
common, which is the constraint expressed in Equation (1).

The load balance constraint ensures that the w-partitions
within Vli are balanced up to a threshold. Assuming ε ∈ R with
ε ≥ 0 is a given input threshold for determining the maximum
imbalance, the load balance constraint is:

∀i, 1 ≤ i ≤ n ∧ comp(Vli) > 1 ∧ ∀1 ≤ p ∈ mi,

cost(Vli,wp
) ≤ (1 + ε)dcost(Vli)/mie (2)

where cost(Vli,wp) =
∑

v∈Vli,wp
d(v) and cost(Vli) =∑

p∈1..mi
cost(Vli,wp

). As shown in Equation 2, the load
balance constraint does not apply to an l-partition with only



a single w-partition, because creating load balance for one
component is not feasible. The constraint ensures that the
cost of executing an l-partition Vli is uniformly distributed to
w-partitions Vli,wp so the maximum difference is less than 2ε.

Objective. The objective function for LBC is to reduce the
critical path of the partitioned DAG, also known as quotient
graph QG, as well as the communication cost between the
partitions. QG is the DAG induced by the partitioning Vlj ,wi

,
where each vertex in QG is a partition and edges Eq exist
only if an edge exists such that the two endpoints are in
separate partitions. The critical path minimization objective
is to minimize PQG

. The communication cost objective is to
minimize

∑
e∈Eq

c(e), where c is the cost associated with each
edge of QG. Since no edges exist between w-partitions, this
objective minimizes the edge costs between l-partitions.

B. LBC Algorithm

As shown in Algorithm 1, the inputs to LBC are a DAG
annotated with a cost model for both vertices and edges,
the number of requested w-partitions, an architecture-related
threshold, and tuning parameters win and agg. Section III-C
illustrates a cost model used in LBC. Since optimizing for both
l-partitions and w-partitions is complex, our algorithm uses
heuristics for speed and simplicity. A major simplification
is to separate the two kinds of partitioning so that the
algorithm, shown in Algorithm 2, proceeds in three stages: (1)
l-partitioning, (2) w-partitioning and, optionally, (3) reordering.
l-partitioning. This step finds l as defined in Section III-A.

The algorithm begins by finding the first partition, which
contains the source nodes of the DAG; note that the upper and
lower bounds for each partition represent the range of levels
(the distance from the source nodes) for the vertices in the
partition. In line 7, the algorithm finds the largest level (closest
to the sync node of the DAG) containing enough disjoint
sub-DAGs to result in approximately k w-partitions. Then, in
lines 9–16 the algorithm searches through adjacent candidates
up to win levels away for where to cut the partition, by finding
the one that results in the most load-balanced w-partitions (see
Section III-C). Once the first l-partition is set, the loop in
line 17 groups the remaining levels into l-partitions with agg
levels per partition. Tuning parameters win and agg denote
the search window for a load-balanced cut and coarseness of
the remaining levels respectively. Finally, the algorithm builds
the last partition, containing the sync node, in line 20.
w-partitioning. In this step, each l-partition, which is a

collection of sub-DAGs with different costs, is divided into
w-partitions such that the cost of each partition is balanced.
To find the sub-DAGs, we do a sequence of depth-first searches
from all source nodes in the l-partition. The sub-DAGs that
intersect are merged. We then use a variant of the first-fit
decreasing bin packing approach [25], [10] to find w-partitions
with near-equal overall cost. Lines 21–26 in Algorithm 2
produce w-partitions of size k if there are enough components;
otherwise, the number of bins is set to comp(Gg)/2. Once the
balanced components are found, we use a modified breadth-first
search (BFS) to store the nodes of w-partitions in a precedence

Algorithm 2: Load-Balanced Level Coarsening
Input :G, d, c k, thresh, win, agg
Output : Vlj ,wi , lj
/* For small DAG, use a single partition */

1 if G ≤ thresh then
2 Vl0 = G
3 l0.lb = 0 l0.ub = G.P
4 return {V ,l}
5 end
/* l-partitioning, starting from source nodes

*/
6 l0.lb = 0
/* Find closest level to the sync node with

enough sub-DAG */
7 linitCut = max({l|comp(G0:l) ≥ k})
8 ε=∞
/* Explore cuts to find good load balance */

9 for i=linitCut; i> linitCut-win; i-=1 do
10 CurCost(:) = BinPack(G0:i,d,k)
11 maximalDiff = max(CurCost) - min(CurCost)
12 if maximalDiff < ε then
13 ε = maximalDiff
14 h0.ub = i
15 end
16 end

/* Group rest of levels into l-partitions */
17 for i=l0.ub; i > G.P − agg; i+=agg do
18 l.append([i, i+ agg])
19 end

/* Final partition includes the sync node */
20 l.append([ln.ub,G.P])

/* w-partitioning */
21 for g ∈ l do
22 if comp(Gg) > 1 then
23 parts = comp(Gg) > k ? k : comp(Gg)/2
24 Vg= BinPack(Gg ,d,parts)
25 end
26 end

/* Reorder w-partitions */
27 for i=n; i> 0; i-=1 do
28 for j=0; j< mi; j+=1 do
29 Q = {∃q ∈ child(Vli,wj )|c(eqVli,wj

) is max }
30 swap(Vli+1,wQ ,Vli+1,wj )
31 end
32 end
33 return {V ,l}

order. The modified BFS algorithm starts from the source
nodes of a w-partition and places the nodes in a queue. Every
node that is removed from the queue is placed in the final
H-Level set and then the incoming degree of its adjacent nodes
is decremented. The algorithm ends when the queue is empty.

Because our w-partitioning algorithm merges sub-DAGs that
intersect, it is possible that fewer than k components are found
due to the intersection. However, we have not encountered this
case in practice, and in such cases it is possible to modify
the algorithm to perform w-partitioning for multiple candidate
l-partitionings to find one where the most subcomponents exist.

Reordering. Optionally, the w-partitions in each l-partition
can be reordered to further enhance locality. This phase
reorders the computation within each w-partition to optimize
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Fig. 3: The maximal difference in time matches the maximal
difference in participating nonzeros. Matrix Flan 1565 is used
as an example; other matrices exhibit similar behavior.

the communication cost objective. The goal is to ensure that
a w-partition Vlj ,wi

in l-partition j that synchronizes with
w-partition Vlj+1,wk

can be moved so that both w-partitions
are assigned to the same thread; as a result, the data will
remain local to the thread. In lines 27–32 of Algorithm 2, the
LBC algorithm checks adjacent l-partitions and ensures that
w-partitions with the highest communication cost are aligned
vertically. During execution, w-partitions with the same ID will
be assigned to the same processor, ensuring that inter-thread
communication between l-partitions is minimal.

C. Cost Model & Windowing Heuristic

Statically scheduling the DAG for parallelism requires
estimating the cost of each node in the DAG accurately, to
ensure a high degree of parallelism and good load balance. The
LBC algorithm implements two heuristics for two different
parts of the algorithm that make this possible to do efficiently:
a simple cost model that does not require machine-specific
empirical performance measurements, and a heuristic for
searching only among a small number of possible partitionings.

Existing approaches for static scheduling of sparse factoriza-
tion algorithms such as that used in PaStiX [23] rely on accurate
cost estimates for each BLAS operation to find load balanced
partitions; PaStiX uses empirically-measured runtimes for each
BLAS kernel. In contrast, the H-Level inspector uses a simple
proportional cost model to find an efficient partitioning of the
DAG. Motivated by the fact that sparse matrix computations
are generally memory bandwidth-bound, this model uses the
number of participating nonzeros in each node of the DAG as
a proxy for the cost of execution.

Definition. The participating nonzeros for a node Ni in
the DAG is the total number of nonzeros touched in order to
complete the computation of Ni. For example, for Cholesky
factorization, the participating nonzeros for a node are the
nonzeros in the column block represented by Ni, plus the
nonzeros touched when eliminating the block. This can
be computed exactly during symbolic factorization or be
approximated with the sum of the column counts for every
column such that the rows corresponding to Ni have a nonzero,
which can be derived in near-linear time in the size of the
matrix [11]. We use a similar metric for computing edge cost,
which is the number of nonzeros that must be communicated.
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Fig. 4: The effect of l-partitioning on the performance and
load balancing of Cholesky for Flan 1565 starting from the
sync node (shown with 1) to close to the source nodes (shown
with 14). The dark rectangle shows the search window from
the initial point which is point 2. The line (1) in red shows the
actual total runtime using each edge cut, (2) in dark green shows
the maximal difference, and (3) in blue shows the percentage
of actual time spent on the closest-to-sync l-partition.

The proportional cost model need not be as exact as the
kinds of cost models used in PaStiX, due to the much coarser
granularity of scheduling in ParSy. However, any model used
for static scheduling, even for coarse-grained tasks, must be
accurate enough to use as a proxy for performance. This
simple cost is sufficient to capture the real behavior of our
static partitioning scheme. Figure 3 shows the actual maximal
difference in time versus the estimated maximal difference in
cost for an example matrix based on participating nonzeros for
l-partitions constructed at different levels, with the left side
being cuts closest to the sync node. The cost closely matches
the observed difference in time measured using cycle counters.
Unlike other static partitioning schemes, the cost model used by
ParSy is simple and requires no empirical measurement, while
effectively estimating performance for candidate partitions.

Given this cost metric, the second heuristic tries to find the
partitioning with minimal load imbalance without searching
through a large number of candidates. This windowed search
heuristic examines a small number of candidates in the
neighborhood of the first l-partition containing enough sub-
DAGs for parallel execution. For implementations, we use a
window size (that is, the number of additional candidates to
search over) of three. Figure 4 shows the effect of the local
search. The first l-partition with enough sub-DAGs is at point
2, but the windowing heuristic chooses a cut at point 5, which
has the best load balance among candidates. As illustrated by
the blue line in Figure 4, choosing cuts closer to the source
nodes results in less work that can be done in parallel, since the
l-partitions closer to the sync node cannot usually be divided
into enough w-partitions for best parallel performance.

IV. OTHER SPARSE MATRIX METHODS

The data dependence graphs and H-level inspection strategy
in ParSy can be used for a large class of sparse matrix
computations. For example, kernels such as LU, QR, and
orthogonal factorizations [34], which introduce fill-in during
computation, the input DAG to ParSy is the assembly tree that
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x=b; // copy RHS to x

HLevel:

for (int i=0; i<blockNo; ++i){

b1 = block2col[i];

b2 = block2col[i+1];

x(b1:b2)=TRSM(L(b1:b2,b1:b2),x(b1:b2));

tempX=GEMV(L(b2:blockNo,b1:b2),x(b1:b2));

for(row index j in column i,k=0){
Atomic:

x(Li(j)) -= tempX(k++) ;}
}}

(b) Serial blocked code

x=b;

for(every l-partition i){
#pragma omp parallel for private(tempX){

for(every w-partition j){
for(every v ∈ HLevelSet[i][j]){

i = v;
b1 = block2col[i];

b2 = block2col[i+1];

x(b1:b2)=TRSM(L(b1:b2,b1:b2),x(b1:b2));

tempX=GEMV(L(b2:blockNo,b1:b2),x(b1:b2));

for(row index j in column i,k=0){
#pragma omp atomic

x(Li(j)) -= tempX(k++) ;}
}}}}

(c) Transformed with H-level

Fig. 5: H-Level transformation for sparse triangular solve. Figure 5a shows an example DAG representing the dependencies for
sparse triangular solve. (b) The blocked forward substitution algorithm with compressed column format that is annotated with
HLevel and Atomic. (c) Code after H-Level transformation. Gray lines in the code are not affected by the transformation.

captures the dependencies in the computation, including those
that come from fill-ins. For kernels with no fill-in such as
ILU(0), IChol(0), and triangular solve, the input is the matrix
DAG. This section describes how ParSy works for sparse
triangular solve, where computations are more regular than
Cholesky.

Triangular Solve. This kernel solves the linear equation
Lx = b for x where L is a lower triangular matrix and b is
the right-hand side (RHS) vector. Figure 5 shows two different
implementations of sparse lower triangular solve for a matrix in
column storage format and dense RHS. A serial implementation
of the algorithm is shown in Figure 5b. Figure 5a shows the
DAG of dependencies for the column-blocked version of matrix
L. ParSy’s H-Level inspector uses the DAG of L and builds the
H-Level set which is an input for the code in Figure 5c. The
H-Level set corresponding to the DAG in Figure 5a is shown
in Figure 1b. Since the iterations in the sparse triangular solve
are more regular compared to Cholesky [5], the benefits of
creating an H-Level set using ParSy are mainly in reducing
synchronizations and increasing locality from level coarsening.

V. EXPERIMENTAL RESULTS

We compare the performance of ParSy-generated code with
PaStiX [23] and MKL Pardiso [48], which are specialized
libraries for matrix factorization. PaStiX uses the same left-
looking supernodal algorithm as ParSy and also uses a static
scheduling heuristic. MKL Pardiso uses the left-right looking
supernodal variant of Cholesky and uses hybrid static/dynamic
scheduling. MKL also provides optimized implementations for
sparse triangular solve in compressed row, compressed column,
and blocked compressed row formats. Thus, Cholesky results
are compared with both PaStiX and MKL Pardiso while results
for triangular solve are compared to MKL’s best performing
implementation amongst the three data structures. For triangular
solve, we use the factorized lower-triangular matrix L that is
the result of running Cholesky on each test matrix. Appendix B
has additional triangular solve experiments on matrices with
non-chordal DAGs. We also parallelize each sparse kernel with

TABLE I
TEST MATRICES, SORTED IN ORDER OF DECREASING

PARALLELISM. nnz IS THE NUMBER OF NONZEROS IN L.

ID Name Rank
(103)

nnz
(106)

Parallelism
(METIS)

Parallelism
(SCOTCH)

1 G3 circuit 1585 127.3 16284 12154
2 ecology2 1000 54.3 11444 7454
3 thermal2 1228 71.9 10618 7087
4 apache2 715.2 164.7 10216 4427
5 StocF 1465 1465.1 1245 7755 6003
6 Hook 1498 1498 1783.8 7651 6032
7 tmt sym 726.8 41.9 6371 4233
8 PFlow 742 742.8 598 5390 4796
9 af shell10 1508 394.3 4900 3752
10 parabolic fem 525.9 35 4712 3488
11 Flan 1565 1564.8 1715.9 3725 3271
12 audikw 1 943.7 1473.1 2438 2203
13 bone010 986.8 1210.1 2332 2020
14 thermomech dM 204.3 9.7 2310 1480
15 Emilia 923 923.1 1992 2277 1927
16 Fault 639 638.8 1275.4 1595 1493
17 bmwcra 1 148.8 79.4 497 402
18 nd24k 72 435.9 48 48
19 nd12k 36 161.9 29 28

the level set used in wavefront techniques [54] and call this
implementation level set. The performance of the level set
implementation is used as a baseline.

For the comparison, we use the set of symmetric positive
definite matrices listed in Table I. The matrices are from [13]
and belong to different domains with real number values in
double precision. The testbed architectures are listed in Table II.
All ParSy-generated code is compiled with GCC v.5.4.0 using
the -O3 option. We report the median of 5 executions for each
experiment. The PaStiX and MKL Pardiso libraries are installed
and executed using the recommended default configuration. For
Cholesky, the default ordering method for PaStiX is Scotch [40]
and for MKL Pardiso is Metis [28]. We use Metis ordering
in ParSy for comparison to MKL Pardiso, and use Scotch
ordering when comparing to PaStiX; this removes the effect
of ordering and allows for a fair comparison. For triangular



TABLE II
TESTBED ARCHITECTURES.

Family Haswell-E Haswell-EP Skylake
Processor Core™

i7-5820K
Xeon™
E5-2680v3

Xeon™
Platinum 8160

Cores 6 @ 3.30 GHz 12 @ 2.5 GHz 24 @ 2.1 GHz
L3 cache 15MB 30MB 33MB
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Fig. 6: ParSy’s (numeric) performance for Cholesky compared
to MKL Pardiso (numeric) and PaStiX (numeric) on Haswell-E
(top), Haswell-EP (middle), and Skylake (bottom). All times
are normalized over the level set numeric time.

solve, we do not show the effect of reordering since reordering
would possibly change the pattern of the matrix to something
other than a triangular pattern. Unless otherwise stated, we
include only numeric factorization time and do not include
time for symbolic factorization.

Cholesky Performance. Figure 6 shows the performance
of ParSy-generated code compared to MKL Pardiso, PaStiX,
and the level set implementation. The ParSy-generated code
is faster than MKL Pardiso by up to 2.7×, 1.7×, and 2.8×
and is faster than PaStiX by up to 1.7×, 1.8×, and 3.1× on
Haswell-E, Haswell-EP, and Skylake respectively.

One of the main objectives of ParSy’s inspector is to improve
locality in sparse codes. Figure 7 shows the relationship
between the performance of ParSy and MKL Pardiso to their
memory accesses on the Haswell-E.The average memory access
latency [22] is a measure for locality and is obtained by
gathering the TLB, L1 cache, and last level cache (LLC)
accesses and misses using the perf profiler. The Haswell-
E specification parameters are obtained from [22]. Figure 7

demonstrates a correlation between the performance of the
ParSy-generated code and the average memory access cost.
The coefficient of determination or R2 is 0.65, showing good
correlation between speed-up and memory access latency. For
matrices where ParSy provides better speedups, locality has
been improved more. Data in Figure 7 shows the original
measurements for the 5 runs and not the medians.
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Fig. 7: Speed up and locality relation on Haswell-E. Average
memory access latency is the average cost of accessing memory
in ParSy and MKL Pardiso. The relation between speed-up
and the memory access ratio is approximated with a line. The
coefficient of determination or R2 of the fitted line is 0.65.

Figure 8 compares the ratio of wait time to CPU time in
ParSy and MKL Pardiso on Haswell-E, measured using Intel’s
VTune Amplifier. Wait time [60] is the time that a software
thread is stalled due to APIs that block or cause synchronization.
CPU time [60] is the time that the CPU takes to execute
numerical factorization. Because it uses dynamic scheduling,
MKL Pardiso is more load balanced and thus has a nearly
zero wait time for all matrices, averaging 99% CPU utilization.
ParSy, however, prioritizes locality over load balance. ParSy
improves locality as shown in Figure 7 and also utilizes the
CPU cores fairly efficiently with an average of 95% CPU
utilization (a ratio of 0.05) as shown in Figure 8. Compared
to MKL Pardiso, ParSy provides a better trade-off between
locality and load balance which leads to the better performance
results for ParSy shown in Figure 6.
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Fig. 8: Wait time to total runtime of Cholesky’s numerical
factorization in ParSy and MKL Pardiso on Haswell-E.

To analyze the performance of ParSy we provide the average
parallelism metric, shown with Parallelism in Table I, which
is related to the sparsity of the matrix. Parallelism is obtained
by dividing the number of nodes in the DAG by its critical
path and is an approximate indicator of available parallelism.
The analysis based on parallelism is provided for both Metis
and Scotch orderings. The performance of ParSy is shown
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Fig. 9: The performance of ParSy (numeric) for triangular solve
compared to MKL (numeric) on Haswell-E (top), Haswell-
EP (middle), and Skylake (bottom) processors. All times are
normalized over the level set numeric time.

with two different orderings. Figure 6 shows how the ParSy-
generated code improves the performance of matrices with
different sparsity patterns. The Skylake processor has a larger
number of cores compared to the other architectures; thus,
we expect matrices with more parallelism to perform better
with ParSy on this architecture; matrices 1, 2, and 3 which
achieve high speed-ups in ParSy compared to MKL Pardiso
have the most parallelism while matrices 17 and 19 with the
least parallelism do not perform as well as the other matrices.

A fill-in reducing ordering method such as Metis or Scotch
determines the number of nonzeros in L and affects the
structure of the assembly tree. For fair comparison with libraries
and to show ordering effect on ParSy, the performance of ParSy
with Metis and Scotch ordering is shown in Figure 6. As shown,
ParSy is faster than the library using the same ordering; also,
ParSy performs well with both orderings. Library approaches
are optimized for a specific ordering and do not perform well
when the ordering is different from their default. For example,
PaStiX with Metis ordering is on average 2.2× slower than
PaStiX with Scotch ordering and MKL Pardiso with Scotch is
on average 7.9× slower than MKL Pardiso with Metis.

Triangular Solve Performance. Figure 9 compares the
performance of triangular solve in ParSy to MKL and wavefront
parallelism. The average speed-up of ParSy-generated code
compared to the level set implementation is 1.2×, 1.3×, 1.0×
on Haswell-E, Haswell-EP, and Skylake respectively. The
speed-up for triangular solve is relatively smaller than speed-ups
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Fig. 10: Symbolic + numeric time for ParSy-generated code,
MKL Pardiso, and PaStiX for Cholesky on Haswell-E (top),
Haswell-EP (middle), and Skylake (bottom). All times are
normalized to PaStiX’s accumulated symbolic + numeric time.

for Cholesky. This may be due to two reasons: (1) the triangular
solve is more regular, and thus the level set implementation
does not create much load imbalance; (2) the kernel has less
data reuse compared to Cholesky which reduces the effects
of optimizing for locality. However, ParSy is faster than the
highly-tuned MKL library on average by 2.6×, 4.7×, and 2.8×
on Haswell-E, Haswell-EP, and Skylake respectively.

Inspection Overhead. The H-Level inspection is performed
at compile time in ParSy and the generated code only manip-
ulates numerical values. ParSy’s accumulated time includes
compile-time inspection, code generation time, and numeric
factorization time. As demonstrated in Figure 10 , the
accumulated time of ParSy is 1.3× and 1.0× faster than
MKL Pardiso and PaStiX respectively, on average across all
architectures. Figure 11 shows the accumulated time of ParSy-
generated code for triangular solve is in average 4.0× and
3.4× faster than the MKL accumulated time on Haswell-E and
Skylake respectively. The accumulated times for Haswell-EP
follows a similar pattern to Haswell-E.

Scalability Analysis. The average speed-up for ParSy is 4×,
6.6×, and 6.8× compared to ParSy serial code on Haswell-
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Fig. 11: The symbolic + numeric time for ParSy-generated
code and MKL for triangular solve on Haswell-E (top), and
Skylake (bottom) processors. All times are normalized to
MKL’s accumulated symbolic + numeric time.

E, Haswell-EP, and Skylake respectively. For MKL Pardiso
and PaStiX the average speed-ups compared to their own
serial codes are 3.9×, 7.8×, and 8.4× for MKL Pardiso and
4.3×, 7.4×, 7.5× for PaStiX for Haswell-E, Haswell-EP, and
Skylake. These numbers demonstrate good scaling in all three
implementations. However, the performance of ParSy is 1.4×
faster than the two libraries across all architectures.

VI. RELATED WORK

Wavefront parallelism [54], [45], [59], [51], [38], [20] is one
of the most common approaches inspector-executor frameworks
use to parallelize sparse matrix methods. These either employ
manually-written inspectors and executors [51], [38], [20],
[39], [35] or automate parts of the process by simplifying
the inspector [54], [45], [59], [19]. These approaches use
inspectors to obtain dependence information that is only known
at runtime. The H-Level sets created in ParSy are typically
coarser than level sets in wavefront parallelism, reducing the
number of costly synchronizations. ParSy also improves load
balance in irregular sparse codes such as Cholesky compared
to wavefront approaches. The closest approach to ours that
finds an efficient trade-off between locality and load balance is
in [5], which extends the Pluto framework [7] with an automatic
parallelization approach for transforming input affine sequential
codes. However, this is limited to structured and dense kernels.

Domain-specific compilers use domain information to dictate
optimizations and transformations the compiler can apply.
These compilers cover numerous applications such as stencil
computations [44], [52], [24], signal processing [43], tensor
algebra [29], matrix assembly in scientific simulations [2], [36],
[30], [6], and dense [21], [50] and sparse [12], [46], [9] linear
algebra. Amongst the domain-specific compilers for sparse
methods Sympiler [9] benefits from specializing the generated

code for a specific sparsity structure and numerical method.
However, Sympiler does not support parallelism on multi-core.
ParSy’s goal is to integrate with the Sympiler framework to
generate parallel code for sparse matrix methods on multiple
processor cores while benefiting from the performance that
Sympiler provides with sparsity-specific code specialization.

Numerous hand-optimized parallel sparse libraries exist
with efficient sparse matrix kernels. These libraries differ in
numerical methods they optimize and the platforms supported.
Implementations in [11], [8], [14] provide sequential sparse ker-
nels such as LU and Cholesky while parallel implementations
exist in work such as SuperLU [16], MKL Pardiso [48], and
PaStiX [23] for shared memory architectures, and in [16], [4]
for distributed memory. Several libraries have also optimized
specific sparse kernels such as triangular solve [31], [38], [57],
[55], [53] and sparse matrix-vector multiply [58], [26], [37].
Sparse kernel variants differ between libraries; for example,
PaStiX implements left-looking sparse Cholesky while MKL
Pardiso uses a left-right looking approach [47]. ParSy optimizes
left-looking Cholesky on shared memory architectures.

Parallel sparse libraries use numerical method-specific code
to determine data dependencies and schedule the computation.
These libraries typically inspect the symbolic information
of the matrix, which is called static/symbolic analysis, and
use the information for numerical manipulation with the
objective of creating load-balanced tasks that can execute in
parallel. Libraries such as PaStiX [23] use static analysis and
static scheduling [1] while most other libraries use hybrid
static/dynamic [49], [47] scheduling. Typically the DAG is
partitioned during inspection with algorithms such as the
subtree-to-subcube heuristic [18], [41], [27]. While dynamic
scheduling can introduce overheads at runtime, static schedulers
using profiling data on a specific architecture limit portability.
ParSy uses the matrix structure and numerical method to
compute a proportional cost that does not rely on the underlying
architecture and enables compile-time scheduling of tasks.

VII. CONCLUSION

We demonstrate how Load-Balanced Level Coarsening can
improve locality and reduce synchronization in sparse kernels,
especially those with non-uniform workloads. ParSy takes the
numerical algorithm and sparsity pattern of the matrix and
generates optimized parallel multi-core code. ParSy’s inspector
uses the LBC algorithm for inspection along with H-Level
transformation for generating the code. ParSy-generated code
outperforms state-of-the-art sparse libraries for sparse Cholesky
and triangular solve across different multi-core processors.

ACKNOWLEDGMENTS

This work is supported by the U.S. National Science
Foundation (NSF) Award Numbers CCF-1657175 and CCF-
1563732 and Adobe Research. This work used the Extreme
Science and Engineering Discovery Environment (XSEDE),
which is supported by the NSF grant number ACI-1548562.



REFERENCES

[1] Emmanuel Agullo, Olivier Beaumont, Lionel Eyraud-Dubois, and Suraj
Kumar. Are static schedules so bad? a case study on cholesky
factorization. In Parallel and Distributed Processing Symposium, 2016
IEEE International, pages 1021–1030. IEEE, 2016.

[2] Martin S Alnæs, Anders Logg, Kristian B Ølgaard, Marie E Rognes, and
Garth N Wells. Unified form language: A domain-specific language for
weak formulations of partial differential equations. ACM Transactions
on Mathematical Software (TOMS), 40(2):9, 2014.

[3] Patrick R Amestoy, Iain S Duff, and J-Y L’Excellent. Multifrontal parallel
distributed symmetric and unsymmetric solvers. Computer methods in
applied mechanics and engineering, 184(2):501–520, 2000.

[4] Patrick R Amestoy, Iain S Duff, Jean-Yves L’Excellent, and Jacko Koster.
A fully asynchronous multifrontal solver using distributed dynamic
scheduling. SIAM Journal on Matrix Analysis and Applications, 23(1):15–
41, 2001.

[5] Muthu Manikandan Baskaran, Nagavijayalakshmi Vydyanathan, Uday
Kumar Reddy Bondhugula, J. Ramanujam, Atanas Rountev, and
P. Sadayappan. Compiler-assisted dynamic scheduling for effective
parallelization of loop nests on multicore processors. PPOPP, 44(4):219–
228, 2009.

[6] Gilbert Louis Bernstein, Chinmayee Shah, Crystal Lemire, Zachary
Devito, Matthew Fisher, Philip Levis, and Pat Hanrahan. Ebb: A dsl for
physical simulation on cpus and gpus. ACM Trans. Graph., 35(2):21:1–
21:12, May 2016.

[7] Uday Bondhugula, A Hartono, J Ramanujam, and P Sadayappan. Pluto:
A practical and fully automatic polyhedral program optimization system.
In Proceedings of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation (PLDI 08), Tucson, AZ (June
2008). Citeseer, 2008.

[8] Yanqing Chen, Timothy A Davis, William W Hager, and Sivasankaran
Rajamanickam. Algorithm 887: Cholmod, supernodal sparse cholesky
factorization and update/downdate. ACM Transactions on Mathematical
Software (TOMS), 35(3):22, 2008.

[9] Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and
Maryam Mehri Dehnavi. Sympiler: transforming sparse matrix codes
by decoupling symbolic analysis. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, page 13. ACM, 2017.

[10] Edward G Coffman, Jr, Michael R Garey, and David S Johnson. An
application of bin-packing to multiprocessor scheduling. SIAM Journal
on Computing, 7(1):1–17, 1978.

[11] Timothy A Davis. Direct methods for sparse linear systems, volume 2.
Siam, 2006.

[12] Timothy A Davis. Algorithm 930: Factorize: An object-oriented linear
system solver for matlab. ACM Transactions on Mathematical Software
(TOMS), 39(4):28, 2013.

[13] Timothy A Davis and Yifan Hu. The university of florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS), 38(1):1,
2011.

[14] Timothy A Davis and Ekanathan Palamadai Natarajan. Algorithm
907: Klu, a direct sparse solver for circuit simulation problems. ACM
Transactions on Mathematical Software (TOMS), 37(3):36, 2010.

[15] James W Demmel, Stanley C Eisenstat, John R Gilbert, Xiaoye S Li, and
Joseph WH Liu. A supernodal approach to sparse partial pivoting. SIAM
Journal on Matrix Analysis and Applications, 20(3):720–755, 1999.

[16] James W Demmel, John R Gilbert, and Xiaoye S Li. An asynchronous
parallel supernodal algorithm for sparse gaussian elimination. SIAM
Journal on Matrix Analysis and Applications, 20(4):915–952, 1999.

[17] Perry A Emrath, S Chosh, and David A Padua. Event synchronization
analysis for debugging parallel programs. In Proceedings of the 1989
ACM/IEEE conference on Supercomputing, pages 580–588. ACM, 1989.

[18] Alan George, Joseph WH Liu, and Esmond Ng. Communication results
for parallel sparse cholesky factorization on a hypercube. Parallel
Computing, 10(3):287–298, 1989.

[19] John R Gilbert and Robert Schreiber. Highly parallel sparse cholesky
factorization. SIAM Journal on Scientific and Statistical Computing,
13(5):1151–1172, 1992.

[20] R Govindarajan and Jayvant Anantpur. Runtime dependence computation
and execution of loops on heterogeneous systems. In Proceedings of
the 2013 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pages 1–10. IEEE Computer Society, 2013.

[21] John A Gunnels, Fred G Gustavson, Greg M Henry, and Robert A Van
De Geijn. Flame: Formal linear algebra methods environment. ACM
Transactions on Mathematical Software (TOMS), 27(4):422–455, 2001.

[22] John L Hennessy and David A Patterson. Computer architecture: a
quantitative approach. Elsevier, 2017.
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Yılmaz, and Zhongbo Chen. Optimization by runtime specialization
for sparse matrix-vector multiplication. In ACM SIGPLAN Notices,
volume 50, pages 93–102. ACM, 2014.

[27] George Karypis and Vipin Kumar. A high performance sparse cholesky
factorization algorithm for scalable parallel computers. In Frontiers of
Massively Parallel Computation, 1995. Proceedings. Frontiers’ 95., Fifth
Symposium on the, pages 140–147. IEEE, 1995.

[28] George Karypis and Vipin Kumar. A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices. University of Minnesota, Department
of Computer Science and Engineering, Army HPC Research Center,
Minneapolis, MN, 1998.

[29] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman
Amarasinghe. The tensor algebra compiler. Proceedings of the ACM on
Programming Languages, 1(OOPSLA):77, 2017.

[30] Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David IW Levin,
Shinjiro Sueda, Desai Chen, Etienne Vouga, Danny M Kaufman, Gurtej
Kanwar, Wojciech Matusik, and Saman Amarasinghe. Simit: A language
for physical simulation. ACM Transactions on Graphics (TOG), 35(2):20,
2016.

[31] Ruipeng Li and Yousef Saad. Gpu-accelerated preconditioned iterative
linear solvers. The Journal of Supercomputing, 63(2):443–466, 2013.

[32] Xiaoye S Li. An overview of superlu: Algorithms, implementation, and
user interface. ACM Transactions on Mathematical Software (TOMS),
31(3):302–325, 2005.

[33] Amy W Lim, Gerald I Cheong, and Monica S Lam. An affine partitioning
algorithm to maximize parallelism and minimize communication. In
Proceedings of the 13th international conference on Supercomputing,
pages 228–237. ACM, 1999.

[34] Joseph W. H. Liu. The role of elimination trees in sparse factorization.
SIAM J. Matrix Anal. Appl., 11(1):134–172, January 1990.

[35] Weifeng Liu, Ang Li, Jonathan Hogg, Iain S Duff, and Brian Vinter. A
synchronization-free algorithm for parallel sparse triangular solves. In
European Conference on Parallel Processing, pages 617–630. Springer,
2016.

[36] Fabio Luporini, David A Ham, and Paul HJ Kelly. An algorithm for
the optimization of finite element integration loops. arXiv preprint
arXiv:1604.05872, 2016.

[37] Duane Merrill and Michael Garland. Merge-based parallel sparse matrix-
vector multiplication. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
page 58. IEEE Press, 2016.

[38] Maxim Naumov. Parallel solution of sparse triangular linear systems in
the preconditioned iterative methods on the gpu. NVIDIA Corp., Westford,
MA, USA, Tech. Rep. NVR-2011, 1, 2011.

[39] Jongsoo Park, Mikhail Smelyanskiy, Narayanan Sundaram, and Pradeep
Dubey. Sparsifying synchronization for high-performance shared-memory
sparse triangular solver. In International Supercomputing Conference,
pages 124–140. Springer, 2014.

[40] François Pellegrini and Jean Roman. Scotch: A software package for
static mapping by dual recursive bipartitioning of process and architecture
graphs. In International Conference on High-Performance Computing
and Networking, pages 493–498. Springer, 1996.

[41] Alex Pothen and Chunguang Sun. A mapping algorithm for parallel
sparse cholesky factorization. SIAM Journal on Scientific Computing,
14(5):1253–1257, 1993.

[42] Alex Pothen and Sivan Toledo. Elimination structures in scientific
computing., 2004.
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1 H-Level:

2 for(I1){
3 .

4 .

5 .

6

7 for(In(I1)){
8 Atomic:

9 c /= a[idx(I1,...,In)]; }}

1 f o r ( every l−pa r t i t i o n i) {
2 #pragma omp p a r a l l e l f o r p r i va t e ( pVars )
3 f o r ( every w−pa r t i t i o n j ) {
4 f o r ( every v ∈ HLevelSet [ i ] [ j ] ) {
5 I1 = v ;
6 . . .
7 f o r (In (I1 ) ) {
8 #pragma omp atomic
9 c /= a [ idx (I1 , . . . , In ) ] ;}}}}}

(a) Before (b) After
Level, loop[1].HLevel(HLevelSet,pVars)

Fig. 12: The H-Level transformation. The loop over I1 in (a) transforms to two nested loops that iterate over the H-Level
set in (b). Any use of the original loop index I1 is replaced with its corresponding value from HLevelSet.

APPENDIX

A. General From of Code Transformation

Figure 12 shows the general form of the H-level transforma-
tion. The loop in line 2 of the code in Figure 12a is changed
to lines 1–4 in the code in Figure 12b. After transformation,
all operations and indices that use I1, which is the index of
the transformed loop, will be replaced with a proper value
from HLevelSet. The parallel pragma in line 2 ensures that
all w-partitions within an l-partition run in parallel. Note that
some algorithms may require atomic pragmas; such cases are
detectable using existing analysis techniques [17].

B. Experimental Results for Non-Chordal DAGs

In order to test our algorithm on non-chordal DAGs, we take
the matrices in Table I and modify them to include only the
non-zeros in the lower triangular part of each matrix; we then
run triangular solve on this synthetic lower triangular matrix.
Unlike the L factors from matrix factorization, these lower
triangular matrices are not chordal. Figure 13 compares the
performance of ParSy-generated code against the MKL library
for the lower triangular part of matrices in Table I. All matrices
are first reordered with the Metis ordering method. ParSy code
is faster than MKL on average by 1.6×, 2.3×, and 7.0× for
Haswell-E (top), Haswell-EP (middle), and Skylake processors
respectively. We observe that the heuristic approach used
for finding sufficient w-partitions finds enough independent
components for LBC to produce a load balanced partitioning.
The number of connected components is on average 1019×
the target k number of w-partitions for these matrices with
non-chordal DAGs.
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Fig. 13: The performance of ParSy (numeric) for triangu-
lar solve compared to MKL (numeric) on Haswell-E (top),
Haswell-EP (middle), and Skylake (bottom) processors. All
times are normalized over the level set numeric time.



ARTIFACT DESCRIPTION: PARSY: INSPECTION AND
TRANSFORMATION OF SPARSE MATRIX COMPUTATIONS

FOR PARALLELISM
C. Abstract

This artifact provides information to reproduce results shown
in the paper: “Inspection and Transformation of Sparse Matrix
Computations for Parallelism.” We explain how to compile and
generate code in ParSy and compare it with MKL Pardiso and
PaStiX. Two separate repositories are provided, one for code
generation and one for comparison with other libraries. A set
of scripts for evaluating each implemented algorithm in the
paper is provided.

D. Description

1) Checklist (artifact meta-information):

• Algorithm: Sparse Cholesky factorization and triangular
solve with a dense right-hand-side

• Program: C/C++ code
• Compilation: GCC v.5.4.0 with -O3 flag
• Binary: MKL v. 17.0.3
• Data set: Publicly available matrix market files
• Run-time environment: Linux
• Hardware: Core™i7-5820K, Xeon™E5-2680, and

Xeon™Platinum 8160 (Skylake)
• Output: The L-factor for the Cholesky algorithm and the

solution vector x for the triangular solve
• Experiment workflow: Install Intel MKL, SuiteSparse,

Metis, Scotch, and PaStiX. Compile ParSy and execute the
test scripts.

• Experiment customization: All libraries with default settings
• Publicly available: yes

2) How software can be obtained (if available): ParSy’s
code is available from https://github.com/sympiler/sympiler
which provides the code generation framework. The evaluation
framework is available from https://github.com/cheshmi/parsy
bench which provides code and a set of scripts for comparing
with other tools e.g., MKL Pardiso and PaStiX.

3) Hardware dependencies: The ParSy code compiles
and runs on any x86 processor. However, the reported re-
sults are obtained on Core™i7-5820K, Xeon™E5-2680, and
Xeon™Platinum 8160 (Skylake) processors.

4) Software dependencies: The current version of ParSy
relies on MKL BLAS, Metis (Metis ordering), and SuiteSparse
(AMD ordering).

5) Datasets: Input matrices in matrix market format are
supported in the current version of ParSy. All selected matrices
in the paper are publicly available from the SuiteSparse Matrix
Collection. The matrices are available publicly from:

https://sparse.tamu.edu/

Two different inputs are used for evaluating the sparse
triangular system to address both chordal and non-chordal
graphs. For chordal experiments, the L factor of the Cholesky
algorithm is used and for the non-chordal experiments, the
lower triangular part of the original symmetric matrix is used.
The test program that runs Cholesky and evaluates the triangular
solve algorithm is provided in the repository.

E. Installation

Two repositories are used in this artifact to illustrate the
code-generation process and to compare with other libraries
that are called in order ParSy and ParSy bench repositories.
The steps to set up ParSy and ParSy bench are presented here.

ParSy. This repository does not have any library dependen-
cies and can be built using any compiler supporting c++11.
The steps to build ParSy are:

$ git clone <https://github.com/sympiler/sympiler>
parsy

$ cd parsy
$ mkdir build; cd build;
$ cmake -DCMAKE_BUILD_TYPE=release ..
$ make

ParSy bench. This repository requires Intel MKL, Metis,
SuiteSparse, PaStiX, and optionally Scotch as prerequisites. The
paths to these libraries should be exported before installation.
The installation procedure for Parsy bench is shown below:

$ git clone https://github.com/cheshmi/parsy_bench
parsy_bench

$ export MKLROOT="/path/to/MKL"
$ export SUITEROOT="/path/to/SuiteSparse"
$ export METISROOT="/path/to/METIS"
$ cd parsy_bench;
$ mkdir build; cd build;
$ cmake -DCMAKE_BUILD_TYPE=release ..
$ make

F. Experiment work-flow

Matrix data set. The evaluated matrices are downloaded
from the SuiteSparse matrix collection (https://sparse.tamu.
edu/). A script is provided in the scripts folder that downloads
and extracts all matrices in the Matrix folder. The following
steps are needed to set up the matrix set:

$ cd /path/to/parsy/scripts/
$ ./dlMatrices.sh

ParSy. After building the code-generation framework,
the code can be generated by passing the output path to
ParSy binary as a command line argument. The following
shows how the code for Cholesky is generated and stored in
cholesky.c:

$ cd /path/to/parsy/build/
$ ./sympiler path/to/cholesky.c

Since the ParSy-generated code is not specialized for a matrix,
the input matrix does not need to be passed as input.

ParSy bench. For convenience, a script is provided such
that it runs ParSy and generates code for the tested algorithm.
The process for Cholesky is shown in the below:

https://github.com/sympiler/sympiler
https://github.com/cheshmi/parsy_bench
https://github.com/cheshmi/parsy_bench
https://sparse.tamu.edu/
https://sparse.tamu.edu/
https://sparse.tamu.edu/


$ cd path/to/ParSy/scripts/
$ ./eval.sh path/to/cholesky/bin/file path/to/input/

matrices

eval.sh script goes over all matrices in the specified path
and run the ParSy code for them. It also runs the ParSy code
for some configurations to find the best tuning parameters. The
output can be redirected to a csv file.

For testing triangular solve, the inputs to eval.sh need to be
changed to triangular solver binary file and the path to lower
triangular matrices.

To compare ParSy’s performance with PaStiX and MKL
Pardiso, the programs built from the library setup phase are
used. The lib eval.sh script is provided that can be used for
evaluating the library codes. The following shows how it is
used for MKL Pardiso:

$ cd path/to/parsy/scripts
$ lib_eval.sh /path/to/mkl/binary path/to/input/

matrices

The full logs of the library will be printed normally. The
numerical factorization time that is reported by the library is
used for comparison in this work.

G. Evaluation and expected results

The output for Cholesky is the factor L and the solution
vector x is the output for the triangular solver. To verify the
results of Cholesky in ParSy, CHOLMOD from SuiteSparse is
used. For the triangular solve, the right-hand-side is initialized
such that the valid output vector is a unit vector. By default
the verification feature is disabled. To enable the verification
process, the VERIFY switch has to be defined while building
the repository as shown below:

$ cd /where/parsy/is/;
$ mkdir buildForVerif; cd buildForVerif;
$ cmake -DCMAKE_BUILD_TYPE=release -DVERIFY ..
$ make

An example of the slurm batch script is also included in the
repository to facilitate regenerating results on servers such as
the XSEDE servers.

H. Experiment customization

Any matrix with the matrix market format can be used as
input to ParSy-generated code.
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