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Abstract—The effective resistance between a pair of nodes in a
weighted undirected graph is defined as the potential difference
induced between them when a unit current is injected at the first
node and extracted at the second node, treating edge weights as
the conductance values of edges. The effective resistance is a key
quantity of interest in many applications and fields including
solving linear systems, Markov Chains and continuous-time
averaging networks. We develop an efficient linearly convergent
distributed algorithm for computing effective resistances and
demonstrate its performance through numerical studies. We also
apply our algorithm to the consensus problem where the aim is
to compute the average of node values in a distributed manner
based on weighted averaging with immediate neighbors. We
show that the distributed algorithm we developed for effective
resistances can be used to design a weight matrix which can
help pass the information among neighbors more effectively,
accelerating the convergence of the classical consensus iterations
considerably by a factor depending on the network structure.
We also present an application of our effective resistance-based
framework to accelerate distributed optimization algorithms
including the EXTRA and DPGA-W.

Index Terms—Effective resistance, graph, distributed optimiza-
tion, consensus, Laplacian matrix, Kaczmarz method

I. INTRODUCTION

Let G = (N , E , w) be an undirected, weighted and con-
nected graph defined by the set of nodes (agents) N =
{1, . . . , n}, the set of edges E ⊆ N×N , and the edge weights
wij > 0 for (i, j) ∈ E . Since G is undirected, we assume that
both (i, j) and (j, i) refer to the same edge when it exists,
and for all (i, j) ∈ E , we set wji = wij . Identifying the
weighted graph G as an electrical network in which each edge
(i, j) corresponds to a branch of conductance wij , the effective
resistance Rij between a pair of nodes i and j is defined as
the voltage potential difference induced between them when a
unit current is injected at i and extracted at j.

The effective resistance, also known as the resistance dis-
tance, is a key quantity of interest to compute in many
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applications and algorithmic questions over graphs. It defines
a metric on graphs providing bounds on its conductance [2],
[3]. Furthermore, it is closely associated with the hitting time
and commute time for a random walk1 on the graph G such
that the probability of a transition from i to j ∈ Ni is
wij/

∑
j′∈Ni

wij′ where Ni , {j ∈ N : wij > 0} denotes
the set of neighboring nodes of i ∈ N ; therefore, it arises
naturally for studying random walks over graphs and their
mixing time properties [4], [5], [6], continuous-time averaging
networks including consensus problems in distributed opti-
mization [4]. Other prominent applications include distributed
control and estimation [7], solving symmetric diagonally dom-
inant (SDD) linear systems [8], deriving complexity bounds
in the Asymmetric Traveling Salesman Problem [9], design
and control of communication networks [10], [11], spectral
sparsification of graphs [12] and collaborative recommenda-
tion systems [13]. There exist centralized algorithms for com-
puting or approximating effective resistances accurately which
require global communication beyond local communication
among the neighboring agents [8], [14]. They are based on
computing or approximating the entries of the pseudoinverse
L† of the Laplacian matrix L, based on the identity Rij =

L†ii + L†jj − 2L†ij [8]. However, such centralized algorithms
are impractical or infeasible for several key applications in
multi-agent systems where only local communications be-
tween the neighboring agents are allowed (see e.g. [15], [16],
[17]); this motivates the development of distributed algorithms
for computing effective resistances which only relies on the
information exchange among immediate neighbors. In these
applications, communication among the agents is typically
the bottleneck rather than local computations by the agents;
and this requires careful development of distributed algorithms
that are efficient in terms of total number of communications
required. Prominent examples include, least square and more
general regression or estimation problems over graphs and
multi-agent networks [18], [19], [20], [21], [22], formation
control of moving agents with noisy measurements and stabil-
ity of multi-vehicle swarms [7], clustering and sparsification
of multi-agent networks [23], [8].

Our first attempt for computing effective resistances in a
decentralized way appeared in a short conference paper [1].

1The hitting time is the expected number of steps of a random walk starting
from i until it first visits j. The commute time Cij is the expected number
of steps required to go from i to j and from j to i back again.
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Compared to the short conference version [1], in this longer
journal paper we provide some new important theoretical and
empirical results. First, we provide a theory to support our
empirical findings in [1]. More precisely, we now show that
the iterate sequence generated by the normalized randomized
Kaczmarz proposed in [1] for computing effective resistances
in a distributed manner linearly converges with a rate at most
as large as the standard randomized Kaczmarz (RK), i.e.,
with a better rate (see Proposition 1). Moreover, we now
provide a theoretical analysis of the effective resistance-based
randomized gossiping for consensus which was missing in [1].
Briefly, we bound the time required to compute an inexact
average using graph conductance-based and spectral-based
analyses and compare these bounds corresponding to effective
resistance-based and classic randomized gossiping methods.
We were able to show that averaging time with resistance
weights is Θ(n) faster than that of classic gossiping on a
barbell graph. Furthermore, we prove that for some graphs,
the averaging time with resistance weights can be faster
than known performance bounds for the averaging time with
Metropolis weights. Second, we added numerical experiments
that show that our framework can accelerate DPGA-W and
EXTRA algorithms for consensus optimization.

Contributions. To our knowledge, there has been no sys-
tematic study of (linearly convergent) efficient distributed
algorithms for computing effective resistances. In this work,
first we discuss how existing algorithms in the distributed opti-
mization literature for solving linear systems can be adapted to
solve this problem. After showing that a naive implementation
of existing distributed optimization algorithms, e.g., the EX-
TRA algorithm [24], is inefficient in terms of the convergence
and communication requirements, we focus on Kaczmarz
methods [8]. We propose a distributed variant of the Kaczmarz
method to compute the effective resistances and show that
this algorithm is linearly convergent while being efficient in
terms of total number of local communications carried out. In
particular, numerical experiments suggest finite convergence
of our algorithms which is of independent interest. Then, we
apply our results to the consensus problem which is the prob-
lem of computing the average of node values over a network
in a distributed manner [16]. We show that classic gossiping
algorithms can be accelerated using local information about
effective resistances. Specifically, we propose a variant of
the classical asynchronous consensus protocol and show that
we can accelerate the convergence considerably by a factor
depending on the underlying network. The main idea is to use
the distributed algorithm we developed for effective resistances
to design a weight matrix which can help pass the information
among neighbors more effectively. Second, we consider the
consensus optimization problem, where the agents connected
on a network aim to collaboratively solve the optimization
problem minx∈Rp f(x) :=

∑n
i=1 fi(x) where fi(x) : Rp → R

is a cost function only available to (node) agent i. This
problem includes a number of key problems in supervised
learning including distributed regression and logistic regres-
sion or more generally distributed empirical risk minimization
problems [25], [26]. The consensus iterations are a building
block of many existing state-of-the-art distributed consensus

optimization algorithms such as the EXTRA algorithm and the
distributed proximal gradient algorithm (DPGA-W) [27] for
consensus optimization. We show through numerical experi-
ments that our framework based on effective resistances can
accelerate the EXTRA and DPGA-W algorithms for consensus
optimization. We believe our method and framework have far-
reaching potential for accelerating many other distributed algo-
rithms including distributed subgradient and ADMM methods,
and this will be the subject of future work.

Related work. For consensus problems, there are some
alternative methods to accelerate the classical consensus pro-
tocols. The approach in [28] is a synchronous algorithm and
builds on modifying the weights depending on the degree of
the neighbors based on Metropolis weights and a momentum
averaging scheme. There are also other approaches based
on momentum averaging [29], [30], [31], min-sum splitting
[32] and Chebyshev acceleration [33], [34] to accelerate the
speed of the consensus methods. Our approach is orthogonal
to these alternative approaches and it aims at improving the
communication efficiency of a consensus optimization algo-
rithm and can be used in principle on top of such acceleration
schemes for consensus iterations from the literature where
randomized sampling of the nodes and weighted averaging
(of local variables at nodes) are used. We also note that since
effective resistance Rij is proportional to the commute time
Cij between nodes i and j, one could in principle generate
the sample paths of T random walks between these nodes
to estimate Cij up to accuracy O(1/

√
T ) in a distributed

fashion with a Monte Carlo approach [35], [13]. However,
this technique suffers from slow (sublinear) convergence and
does not scale well to large graphs – which is typical for the
random walk-based Monte Carlo methods, in contrast with the
linearly convergent algorithms we are providing in this work
that are efficient in terms of total number of communications
among the nodes.

Outline. In Section II, we introduce our decentralized al-
gorithm for computing effective resistances. In Section III, we
propose an effective resistance-based asynchronous gossiping
algorithm for solving the consensus problem and show its
linear convergence. In Section IV, we provide a number
of theoretical convergence guarantees for this algorithm that
illustrates the performance improvement that can be obtained
with our approach. In Section V, we provide numerical results
for algorithms given in Sections II and III and illustrate that
our framework based on effective resistances can accelerate
EXTRA and DPGA-W algorithms for consensus optimization.
Finally, in Section VI, we give a summary of our results and
discuss future potential work.

Notation. Let |S| denote the cardinality of a set S and b.c
denote the floor function. We define di , |Ni| as the degree
of i ∈ N , and m , |E|. Throughout the paper, L ∈ R|N |×|N|
denotes the weighted Laplacian of G, i.e., Łii =

∑
j∈Ni

wij ,
Lij = −wij if j ∈ Ni, and equals to 0 otherwise. The set
Sn denotes the set of n × n real symmetric matrices. For an
n × m matrix A, Null(A) , {x ∈ Rm | Ax = 0} and
Rank(A) , {y ∈ Rn | ∃x ∈ Rm s.t. y = Ax}. We use
the notation Z = [zi]

n
i=1 where zi’s are either the columns or

rows of the matrix Z depending on the context. 1 is the column
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vector with all entries equal to 1, and I is the identity matrix.
We let ||x||p denote the Lp norm of a vector x for p ≥ 1. We
also let ‖A‖F to denote the Frobenius norm of a matrix A.
A square matrix A is doubly stochastic if all of its entries are
non-negative and all its rows and columns sum up to 1. We
say that a square matrix A is weakly diagonally dominant if its
diagonal entries Aii satisfy the inequality |Aii| ≥

∑
j 6=i |Aij |

for every i. Let f and g be real-valued functions defined over
positive integers. We say f(n) = O(g(n)) if f is bounded
above by g asymptotically, i.e. there exist constants k1 > 0
and n0 such that f(n) ≤ k1 · g(n) for all n > n0. We say
f(n) = Θ(g(n)) if f is bounded both above and below by
g asymptotically, i.e., there exist constants k1, k2 > 0 and n0

such that k2 ·g(n) ≤ f(n) ≤ k1 ·g(n) for all n > n0. Similarly,
we say f(n) = Ω(g(n)) if there exist constants c > 0 and
n0 such that f(n) ≥ c g(n) for every n > n0. Finally, let
log(x) denote the natural logarithm of x (logarithm having
the mathematical constant e as a base).

II. METHODOLOGY

It is well known that the Laplacian matrix L of an undirected
graph is symmetric and positive semidefinite; and since G is
connected, the nullspace of L is spanned by 1. In particular,
consider the eigenvalue decomposition L =

∑n
i=1 λiuiu

>
i ; we

have 0 = λ1 < λ2 ≤ . . . ≤ λn and u1 = 1√
n
1. Recall that we

would like to compute L† =
∑n
i=2

1
λi
uiu
>
i in a decentralized

way. First, we are going to describe a naive way to solve
this problem which would converge with a linear rate, but
require storing and communicating n×n matrices among the
neighboring nodes. Next, we discuss that L† can be computed
in a distributed way using the (randomized) Kaczmarz (RK)
method with significantly less communication burden.

A. A consensus-based naive method for computing L†:
Let θ ≥ λ2 and define L̄ , L+ θ

n11
>, i.e., L̄ = θu1u

>
1 +∑n

i=2 λiuiu
>
i ; hence, L̄−1 = L† + 1

θu1u
>
1 . To compute L̄−1,

consider solving (P ) : minX∈Sn f(X) , 1
2

∥∥L̄X − I
∥∥2

F
.

Note that f is strongly convex with modulus λ2 since θ ≥ λ2;
moreover, such θ can be chosen easily in certain cases. For
instance, for unweighted G, i.e., wij = 1 for (i, j) ∈ E , it
is known that λ2 ≤ mini∈N di; hence, θ could be chosen
after running a min-consensus algorithm over G. To solve
(P ) in a decentralized manner, we will exploit connectivity
of G. Let ¯̀

i ∈ Rn be a column vector for i ∈ N such that
L̄ = [(¯̀

i)
>]i∈N , i.e., (¯̀

i)
> denotes the i-th row of L̄. (P ) can

be equivalently written as follows:

(P ′) : min
Xi∈Sn, i∈N

{∑
i∈N

∥∥Xi ¯̀i − ei∥∥22 : Xi = Xj ∀ (i, j) ∈ E

}
,

where ei denotes the i-th standard basis vector of Rn.
Although this problem is not strongly convex in [Xi]i∈N ,
there is a way to regularize the objective f̄([Xi]i∈N ) ,∑
i∈N

∥∥Xi
¯̀
i − ei

∥∥2

2
to make it strongly convex. Indeed, it

can be shown that for α > 0 sufficiently large, f̄α ,
f̄ + αr is strongly convex in [Xi]i∈N , where r([Xi]i∈N ) ,∑

(i,j)∈E ‖Xi −Xj‖2F ; and one can equivalently consider
min{f̄α([Xi]i∈N ) : Xi = Xj (i, j) ∈ E} – for details,
see [36], [37]. In particular, the algorithm EXTRA in [24]

exploits a similar restricted strong convexity argument and
achieves a linear convergence rate for the iterate sequence.
That being said, the communication overhead is the main
problem with this approach for solving (P ′). In fact, at each
iteration k, each node i ∈ N communicates its local estimate
Xk
i to its neighbors in Ni; thus, each iteration of these con-

sensus based methods would require O(2|E|n2) real variable
communications in total, e.g., EXTRA. Next, we discuss the
distributed implementation of the RK method to compute L†,
which would prove itself as a more communication efficient
and practical method.

B. Distributed Kaczmarz method for computing L†:
Consider a consistent linear system Ax = b, where A =

[a>i ]mi=1 ∈ Rm×n and b ∈ Rm. Suppose A has no rows with
all zeros, and let x∗ = argmin{‖x‖2 : Ax = b}. In [38],
it is shown that x∗ can be computed using a randomized
Kaczmarz method. In particular, it follows from the results
in [38] that starting from x0 ∈ Null(A), the method displayed
in Algorithm 1 produces {xk}k≥1 such that E[

∥∥xk − x∗∥∥2

2
] ≤

ρk
∥∥x0 − x∗

∥∥2

2
for k ≥ 0 with ρ , 1 − λ+

min(A>HA)

where λ+
min(·) denotes the smallest positive eigenvalue and

H =
∑m
i=1 pi

1
‖ai‖22

eie
>
i ; furthermore, 1 − 1

Rank(A) ≤ ρ < 1.

Note that fixing pi = ‖ai‖22 / ‖A‖
2
F gives us the randomized

Kaczmarz in [39], [40].

Algorithm 1: RK({pi}mi=1) – Randomized Kaczmarz

1 Initialization: x0 ∈ Null(A)
2 for k ≥ 0 do
3 Pick i ∈ {1, . . . ,m} with probability (w.p) pi
4 xk+1 ← xk − 1

‖ai‖2
(a>i x

k − bi)ai

Note LL† =
∑n
i=2 uiu

>
i and I =

∑n
i=1 uiu

>
i ; hence,

LL† = I − u1u
>
1 = I − 1

n11
>. Although the solution set

{X ∈ Sn : LX = I− 1
n11

>} has infinitely many elements, it
is well-known that L† is the unique solution to

L† = argmin
X∈Sn

{‖X‖F : LX = B}, (1)

where B , I− 1
n11

>. Let xl, bl ∈ Rn for l ∈ N be column
vectors such that X = [xl]l∈N and B = [bl]l∈N , i.e., bl =
el − 1

n1. Note n columns of L† can be computed in parallel:

xl∗ , argmin
x∈Rn

{‖x‖2 : Lx = bl}, l ∈ N , (2)

i.e., L† = [xl∗]l∈N . Since L†1 = 0, xn∗ = −
∑n−1
l=1 x

l
∗. Thus,

one does not need to solve for all l ∈ N ; it suffices to compute
{xl∗}l∈N\{n} and calculate xn∗ from these.

Let {xl,k}k≥1 be the sequence generated when RK imple-
mented on (2) for l ∈ {1, . . . , n − 1}. In Algorithm 2, we
summarized the distributed nature of RK steps assuming that
each i ∈ N has an exponential clock with rate ri > 0, and
when its clock ticks, the node i wakes up and communicates
with its neighbors j ∈ Ni on G. More precisely, consider
the resulting superposition of these point processes, and let
{tk}k∈Z+

be the times such that one of the clocks ticks; hence,
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for all k ≥ 0, the node that wakes up at time tk is node i with
probability pi = ri/

∑
j∈N ri, i.e., {tk}k≥0 denotes the arrival

times of a Poisson process with rate
∑
j∈N rj .

Algorithm 2: D-RK({ri}i∈N ) – Decentralized RK

1 Initialization: xl,0i ← 0 for l ∈ N \ {n} and i ∈ N
2 for k ≥ 0 do
3 At time tk, i ∈ N wakes up w.p. pi = ri∑

j∈N ri

4 for l ∈ {1, . . . , n− 1} do
5 Node i requests and receives xl,kj from j ∈ Ni
6 Node i computes and sends ql,ki to all j ∈ Ni

ql,ki = 1∑
j∈Ni∪{i}

L2
ij

(
∑
j∈Ni∪{i} Lijx

l,k
j − b

l
i)

7 Each j ∈ Ni ∪ {i} updates xl,k+1
j ← xl,kj − Lijq

l,k
i

For k ≥ 0, let Xk , [xl,k]l∈N be the concatenation of
D-RK sequence, where xn,k , −

∑n−1
l=1 x

l,k, and define

S = diag(s) where si ,
∑

j∈Ni∪{i}

L2
ij for i ∈ N . (3)

According to [38], [39], for ri = si, we get H = 1
‖L‖2F

I, and
this implies linear convergence of {Xk}k≥0 to L† with rate

ρ , 1−
(
λ+

min(L)

‖L‖F

)2

, (4)

i.e., E[
∥∥Xk − L†

∥∥2

F
] ≤ ρk

∥∥L†∥∥2

F
for k ≥ 0. Moreover,

for each i ∈ N , when node i wakes up, Decentralized
Randomized Kaczmarz (D-RK) defined by Algorithm 2 re-
quires 2di(n − 1) communications – each communication i
sends/receives a real variable to/from a neighboring node in
Ni; hence, at each iteration, i.e., at each time a node wakes
up, the expected number of communication per iteration is
N =

∑
i∈N 2pidi(n − 1) ≤ 2dmax(n − 1). In particular, for

unweighted graphs, i.e., wij = 1 for (i, j) ∈ E , we have
pi = di(di+1)

2m+
∑

j∈N d
2
j

for i ∈ N .
Instead of (1), consider implementing D-RK on a normal-

ized system S−
1/2LX = S−

1/2B to obtain better convergence
rate in practice – i-th equation in this normalized system can
be computed locally at i ∈ N . For this system, where all the
rows have unit norm, one can set ri = r for some r > 0 for
all i ∈ N – hence, nodes wake up with uniform probability,
i.e., pi = 1

n for i ∈ N ; for this choice of equal clock rates,
H = 1

nI and {Xk}k converges linearly to L† with rate

ρS , 1− 1

n
λ+

min(LS−1L). (5)

Moreover, the expected number of communication per iter-
ation is N = 4mn−1

n ≤ 4m. In all experiments on small
world random networks – see the definition in the numeri-
cal section – D-RK implemented on the normalized system
worked significantly better than directly implementing it on
(1) (see Fig. 4). The next proposition formalizes this numerical
observation and shows that the normalized system has a faster
convergence rate. The proof is deferred to the Appendix A.

Proposition 1. It holds that

1

n
λ+
min(LS−1L) ≥

(
λ+
min(L)

‖L‖F

)2

, (6)

where S is given by (3). Then, it follows that ρS ≤ ρ where
ρ and ρS are defined by (4) and (5).

In the next section, we discuss how effective resistances can
be used to accelerate classical gossiping algorithms for solving
the consensus problem.

III. EFFECTIVE RESISTANCE-BASED CONSENSUS

Let y0 ∈ Rn be a vector such that the i-th component
represents the initial value at node i, and let ȳ ,

∑n
i=1 y

0
i /n

be the average. In consensus algorithms, the aim is to compute
ȳ at each node in a distributed manner. As in Section II-B,
we assume that each i ∈ N has an exponential clock with
rate ri > 0. If a node wakes up at time tk, it is node i with
probability (w.p) pi. Given that the clock of node i ticks at time
tk and the node i wakes up, the conditional probability that
it picks one of its neighbors j ∈ Ni is given by pj|i ∈ (0, 1),
where

∑
j∈Ni

pj|i = 1. Next, nodes i and j exchange their
local variables yki and ykj . We assume that each node i ∈ N
knows {Rij}j∈N , where Rij = L†ii+L

†
jj−2L†ij for (i, j) ∈ E .

Algorithm 3: Randomized Gossiping

1 Initialization: y0 = [y01 , y
0
2 , . . . , y

0
n]> ∈ Rn

2 for k ≥ 0 do
3 At time tk, i ∈ N wakes up w.p. pi = ri/

∑
j∈N rj

4 Picks j ∈ Ni randomly w.p. pj|i
5 yk+1

i ← yki +ykj
2

, yk+1
j ← yki +ykj

2

Assuming that there are no self-loops, for each i ∈ N , let

Pii = 0; Pij := pipj|i, ∀ j ∈ Ni, (7a)
Pij := 0, ∀j ∈ N \ Ni, (7b)

where Pij is the (unconditional) probability that the edge (i, j)
is activated by the node i. Note that by definition, we have∑
ij Pij ,

∑
i∈N

∑
j∈N Pij = 1. We will be considering

two different consensus protocols, where in both protocols
nodes operate as in Algorithm 3 but with different {pi}i∈N
and {pj|i}j∈Ni

for i ∈ N .
1) Classic Randomized Gossiping: At each iteration k, each

edge (i, j) ∈ E has equal probability of being activated. If an
edge (i, j) is activated at iteration k, the nodes take average
of their local variables yki and ykj . This algorithm admits an
asynchronous implementation – see, e.g., [16]. In our node-
wake-up based asynchronous setting, the same behavior can be
achieved if each node i wakes up with equal probability pui =
1
n , i.e., using uniform clock rates ri = r > 0 for i ∈ N . The
superscript u stands for the uniform choice of clock rates. Then
node i picks the edge (i, j) with conditional probability puj|i =
1
di

for all j ∈ Ni. In this case, the unconditional probabilities
are given by

Puij = pui p
u
j|i =

1

n

1

di
, Puji = puj p

u
i|j =

1

n

1

dj
∀ (i, j) ∈ E .
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2) Randomized Gossiping with Effective Resistances: This
algorithm is similar to the classic randomized gossiping de-
scribed above, with the only difference that the edges are sam-
pled with non-uniform probabilities proportional to effective
resistances {Rij}(i,j)∈E . Indeed, in our node-wake-up based
asynchronous setting, each node i wakes up with probability
pri =

∑
j∈Ni

Rij

2
∑

(i,j)∈E Rij
, i.e., setting clock rate ri =

∑
j∈Ni

Rij

for i ∈ N , and node i picks (i, j) with conditional probability
prj|i =

Rij∑
j∈Ni

Rij
for all j ∈ Ni. Effective-resistance based

gossiping corresponds to the unconditional probabilities

P rij = pri p
r
j|i =

Rij
2
∑

(i,j)∈E Rij
=

Rij
2(n− 1)

= P rji

for all (i, j) ∈ E where the third equality follows from Fosters
Theorem which says that

∑
(i,j)∈E Rij = (n − 1) (see e.g.

[41]).
In order for the two different gossiping methods to have

the same expected number of node-wakeups in a given time
period, one should set ri = r = 2(n − 1)/n for i ∈ N
within the classic randomized gossiping model; hence, the rate
of both Poisson processes will be the same, i.e.,

∑
i∈N ri =

2(n− 1).
Suppose the edge (i, j) is picked by node i. We can write

the update in Step 5 of the Algorithm 3 as

yk+1 = Wijy
k where Wij := I − (ei − ej)(ei − ej)>

2
.

We also define

WP , EP [Wij ] =
∑
i,j∈N

PijWij , (8)

which is the expected value of the random iteration matrix Wij

with respect to the distribution defined over i ∈ N and j ∈ Ni;
hence, WP1 = W

>
P1 = 1. It can also be seen that Wij

is a doubly stochastic, non-negative and a weakly diagonally
dominant matrix for every i ∈ N and j ∈ Ni; therefore,
WP , which is a convex combination of Wij matrices, is
also a doubly stochastic, non-negative and weakly diagonally
dominant matrix. It follows then from the Gershgorin’s Disc
Theorem (see e.g. [42]) that all the eigenvalues of WP are
non-negative. Moreover, since WP is a non-negative doubly
stochastic matrix, its largest eigenvalue λn(WP ) = 1. It can
be easily checked that WP also satisfies

WP = I − 1
2D + 1

2 (P + P>), (9)

where D is a diagonal matrix with i-th entry Di ,∑
j∈Ni

(Pij +Pji). Plugging in Pu and P r for P in this iden-
tity respectively leads immediately to the following Lemma.

Lemma 2. The matrices WP r = EP r [Wij ] and WPu =
EPu [Wij ] satisfy the identities

WPu = I − 1

2
Du +

Pu + (Pu)>

2
,

WP r = I − 1

2
Dr +

P r + (P r)>

2
,

where Du and Dr are diagonal matrices satisfying [Du]ii :=∑
j∈Ni

(Puij+P
u
ji), [Dr]ii = 1

(n−1)Ri where Ri ,
∑
j∈Ni

Rij .

Let A(P ) denote an asynchronous gossiping algorithm with
probability matrix P characterized by a set of probabilities
{pi}i∈N and {pj|i}j∈Ni for i ∈ N as in (7). The performance
of such an algorithm is typically measured by the ε-averaging
time defined as:

Tave(ε, P ) , sup
y0∈Rn

inf

{
k : P

(
‖yk − ȳ1‖
‖y0‖

≥ ε
)
≤ ε
}
.

We will prove later in Section IV that averaging time of
the effective resistance-based consensus Tave(ε, P r) improves
upon that of classical consensus Tave(ε, Pu) for some graphs.
We note that the number of clock ticks can be converted to
absolute time easily with standard arguments (simply dividing
k by

∑
i∈N ri to get the expected time of the k-th tick),

e.g., see [16, Lemma 1]. This allows us to use number of
(clock ticks) iterations to compare asynchronous algorithms.
The following theorem from [16] shows that the second largest
eigenvalue of WP determines the averaging time.

Theorem 3 ([16, Theorem 3]). For the symmetric matrix WP

defined in (8), the following holds:

0.5
log(ε−1)

log([λn−1(WP )]−1)
≤ Tave(ε, P ) ≤ 3

log(ε−1)

log([λn−1(WP )]−1)
,

where λn−1(WP ) is the second largest eigenvalue of WP .

This result makes the connection between the convergence
time of an asynchronous gossiping algorithm and the spectrum
of the expected iteration matrix WP . Therefore, in order to
compare resistance-based gossiping with classical gossiping
introduced in Section III-2, it is sufficient to estimate the
second largest eigenvalues of WP r and WPu and compare
them. In the next section, we discuss estimating the second
largest eigenvalues of WP r and WPu based on the notions of
graph conductance and hitting times, when the eigenvalues are
not readily available in closed form. We will also discuss some
examples for which we can explicitly compute the eigenvalues.

Before we move on to the spectral analysis of these expected
iteration matrices, it is worth emphasizing that the matrices
WP r and WPu are symmetric and doubly stochastic; there-
fore, they can both be viewed as the probability transition
matrix of a reversible Markov Chain on the graph G, both
with a uniform stationary distribution. In the next section,
we study gossiping algorithms over barbell graphs, which are
frequently studied in the literature for the consensus problem
as they constitute a worst-case example in terms of mixing
properties of random walks [5, Section 5] and the performance
of distributed averaging algorithms (see e.g. [4], [43]). Barbell
graphs are obtained by connecting two copies of a complete
graph Kñ with a single edge (see Figure 1), and are denoted
as Kñ −Kñ.

Fig. 1: Barbell graph Kñ −Kñ with n = 2ñ = 12 nodes
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For Kñ − Kñ, let (i∗, j∗) be the edge that connects the
two complete subgraphs. This is the only edge that allows
node values to be propagated between the complete subgraphs;
therefore, how frequently it is sampled is a key factor that
determines the averaging time. For example, the unconditional
probability of sampling this edge, which we refer to as
the bottleneck edge, with uniform weights can be computed
explicitly as

Pui∗j∗ =
1

n

1

di∗
=

2

n2
= Puj∗i∗ . (10)

However, we have

P ri∗j∗ = P rj∗i∗ =
Ri∗j∗

2(n− 1)
=

1

2(n− 1)
, (11)

where we used the fact that Ri∗j∗ = 1 (see also the proof
of Lemma 16). Comparing the probabilities (10) and (11), we
observe that effective resistance weights allow sampling of
the bottleneck edge more frequently (by a factor of Θ(n)).
A similar effect can also be observed for the Markov chains
defined by the transition probability matrices WPu and WP r .
In fact, by an explicit computation based on Lemma 2, we get

[WPu ]i∗j∗ = [WPu ]j∗i∗ =
2

n2
, (12a)

[WP r ]i∗j∗ = [WP r ]j∗i∗ =
1

2(n− 1)
. (12b)

Notice that the probability of moving from one complete
subgraph to another is significantly larger (by a factor of Θ(n))
for the effective resistance-based Markov chain. Intuitively
speaking, this fact allows the effective resistance-based chain
to traverse between two complete subgraphs faster when n is
large which in turn leads to faster averaging over the nodes.
This will be formalized and proven in the next section.

IV. THEORETICAL GUARANTEES FOR EFFECTIVE
RESISTANCE-BASED CONSENSUS

A. Conductance-based analysis

Probability transition matrices on graphs have been studied
well in the literature; in particular, there are some combina-
torial techniques to bound their eigenvalues based on graph
conductance [5] as well as some algebraic techniques that
allow one to compute all the eigenvalues explicitly exploiting
symmetry groups of a graph [44] as we shall discuss in
Section IV-B.

The notion of graph conductance is tied to a transition
matrix W over a graph which corresponds to a reversible
Markov chain admitting an arbitrary stationary distribution π.
It can be viewed as a measure of how hard it is for the Markov
chain to go from a subgraph to its complement in the worst
case. Roughly speaking, low conductance means that there
exists a subset of nodes that is not well-connected with the
rest of the graph. The notion of graph conductance allows us
to provide bounds on the mixing time of the corresponding
Markov chain as we discuss below.

Definition 4 (Conductance). Let W be the transition matrix of
a reversible Markov chain2 on the graph G with a stationary
distribution π = {πi}ni=1. The conductance Φ is defined as

Φ(W ) = min
S⊂V

∑
i∈S, j∈Sc πiWij

min{π(S), π(Sc)}
, (13)

where π(S) :=
∑
i∈S πi.

Given the transition matrix W , the relation between con-
ductance Φ(W ) and the second largest eigenvalue λn−1(W )
is well-known and given by the Cheeger inequalities (see e.g.
[45, Proposition 6])

1− 2Φ(W ) ≤ λn−1(W ) ≤ 1− Φ2(W ). (14)

Therefore, larger conductance leads to faster averaging time in
light of Theorem 3. In particular, we can get lower and upper
bounds on the averaging time for both classic and effective
resistance based gossiping using the Cheeger’s inequality.

Next, we study gossiping algorithms over barbell graphs
through conductance analysis. In particular, our next result for
a barbell graph with n = 2ñ nodes shows Θ(n) improvement
on the conductance of effective resistance-based transition
probabilities WP r compared to uniform probabilities WPu .

Proposition 5. Consider the two Markov chains on the barbell
graph Kñ −Kñ defined by the transition matrices WPu and
WP r . Their respective graph conductance values are given by

Φ(WPu) =
4

n3
, Φ(WP r ) =

1

n(n− 1)
.

By taking the logarithm of the Cheeger inequalities (14),
for Φ(W ) ≤ 1/2, we obtain

− log(1− Φ2(W )) ≤ log(λ−1
n−1(W )) ≤ − log(1− 2Φ(W )).

(15)
Then, choosing W = WPu and W = WP r above, applying
Theorem 3 and Proposition 5 and noting − log(1−x) ≈ x for
x close to 0, leads to the following lower and upper bounds
on the averaging time of effective resistance-based gossiping
and classical gossiping algorithms.

Corollary 6. The ε-averaging times of gossiping algorithms
A(Pu) and A(P r) on the barbell graph with n nodes admit
the following bounds:

Θ(n3 log
(
1/ε)

)
≤ Tave

(
ε, Pu

)
≤ Θ

(
n6 log(1/ε)

)
, (16)

Θ
(
n2 log(1/ε)

)
≤ Tave(ε, P r) ≤ Θ

(
n4 log(1/ε)

)
. (17)

These bounds from Corollary 6 for the barbell graph show
that using effective resistances, one can improve upper and
lower bounds on the averaging times for consensus by a
factor of Θ(n) and Θ(n2), respectively, at the same precision
ε > 0. One can also consider other similar graphs with low
conductance, e.g., c-barbell graph (denoted by c − Kñ) for
c ≥ 2 is a path of c equal-sized complete graphs (Kñ) [46] as
illustrated in Figure 2.

For c-barbell graphs, we can show similar improvement for
the upper and lower bounds in terms of scaling with respect
to the total number of nodes n = cñ.

2That is π(i)Wij = π(j)Wji for all i, j ∈ N .
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Fig. 2: A c-barbell graph with ñ = 4 (total number of nodes
n = ñc = 4c).

Proposition 7. Consider the two Markov chains on the c-
barbell graph with n = ñc nodes defined by the transition
matrices WPu and WP r . Their respective graph conductance
values satisfy

Φ(W̄Pu) =
c∗
cñ3

, Φ(W̄P r ) =
c∗

2ñ(cñ− 1)
, (18)

where c∗ =
(
b c2c
)−1

. Then, it follows that

Θ(c2ñ3) ≤ Tave(ε, Pu) ≤ Θ(c4ñ6), (19)

Θ(c2ñ2) ≤ Tave(ε, P r) ≤ Θ(c4ñ4). (20)

Although this analysis is also applicable to other graphs with
low conductance, it does not typically lead to tight estimates,
i.e., the lower and upper bounds do not match in terms of their
dependency on n. In the next section, we show that for the
case of barbell graphs we get tight estimates on the averaging
time by computing the eigenvalues of the averaging matrices
WP r and WPu explicitly. More precisely, we will show in
Proposition 9 that the lower bounds in (16)–(17) are tight in
the sense that Tave(ε, Pu) = Θ(n3) and Tave(ε, P r) = Θ(n2)
and the effective resistance-based averaging is faster by a
factor of Θ(n).

B. Spectral analysis

Eigenvalues of probability transition matrices defined on
barbell graphs are studied in the literature. Consider the edge-
weighted barbell graph Kñ − Kñ with n = 2ñ nodes. Let
(i∗, j∗) be the edge that connects the two complete subgraphs.
The result [44, Prop. 5.1] gives an explicit formula for the
eigenvalues of a probability transition matrix W with tran-
sition probabilities proportional to edge weights, i.e., Wij =
wij/

∑
j∈Ni

wij where wij satisfy the following assumptions:
wi∗i∗ = wj∗j∗ = 0, wi∗j∗ = A, wi∗j = wj∗i = B for all
j ∈ Ni∗ \ {j∗} and i ∈ Nj∗ \ {i∗}, wij = C for all (i, j) in
each Kñ such that i 6= j and i, j /∈ {i∗, j∗}, and wii = D for
i ∈ N \ {i∗, j∗} for some A,B,C,D. However, in our case,
all of the entries on the diagonal of WP r and WPu are strictly
positive (breaking the wi∗i∗ = wj∗j∗ = 0 assumption); there-
fore, [44, Prop. 5.1] is not directly applicable. In Proposition 8,
we adapt this result to our setting with minor modifications to
allow wi∗i∗ = wj∗j∗ = G for any G > 0 so that it becomes
applicable to WP r and WPu . The proof steps are similar to
the proof of [44, Prop. 5.1] and are based on exploiting the
symmetry properties of the barbell graph illustrated in Figure
3 for ñ = 4. That said, we still provide the modified proof in
the supplementary file for the sake of completeness.

Fig. 3: An edge-weighted barbell graph Kñ −Kñ with edge
weights A,B,C,D,G > 0 for ñ = 4.

Proposition 8 (Generalization of Proposition 5.1 in [44]).
Consider the edge-weighted barbell graph Kñ − Kñ with
n = 2ñ nodes. Let (i∗, j∗) be the edge that connects the
two complete subgraphs. Assume that weights are of the form
wi∗i∗ = wj∗j∗ = G, wi∗j∗ = A, wi∗j = wj∗i = B for all
j ∈ Ni∗ \ {j∗} and i ∈ Nj∗ \ {i∗}, wij = C for all (i, j) in
each Kñ such that i 6= j and i, j /∈ {i∗, j∗}, and wii = D
for i ∈ N \ {i∗, j∗} for some A,B,C,D,G > 0. Consider
the transition matrix W associated to this graph with entries
Wij = wij/

∑
j∈Ni

wij , then the eigenvalues of W are
• λa := 1 with multiplicity one,
• λb := −1 + A+G

A+G+E + F
F+B with multiplicity one,

• λc := D−C
B+F with multiplicity n− 4,

• λ± := 1
2

(
F

B+F + G−A
A+E+G ±

√
S
)

,

where E := (ñ−1)B, F := D+(ñ−2)C and S :=
(

F
B+F +

G−A
A+E+G

)2 − 4(FG−BE−AF )
(B+F )(A+E+G) .

Proof. Proof of Proposition 8 is given in the supplementary
material with some background material on the symmetry
groups of the barbell graph.

Based on this result, we characterize the second largest
eigenvalue of the consensus matrices WPu and WPu with
an explicit computation; next, using Theorem 3 we show that
averaging time with resistance weights is Θ(n) faster on a
barbell graph. The proof can be found in the appendix.

Proposition 9. Consider Markov chains on the barbell graph
Kñ−Kñ with transition matrices WP r and WPu . The second
largest eigenvalues of these matrices are given by

λn−1(WP r ) = 1−Θ(
1

n2
), λn−1(WPu) = 1−Θ(

1

n3
).

Then, it follows from Theorem 3 that

Tave(ε, P
r) = Θ(

1

n
)Tave(ε, P

u).

C. Hitting Times and Mixing Times

Before giving a formal definition of the ε-mixing time,
we introduce the total variation (TV) distance between two
probability measures p and q defined on the vertex set N =
{1, 2, . . . , n}. Let p and q be probability measures on N . TV
distance between p and q is defined as

‖p− q‖TV :=
1

2
‖p− q‖1.
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Given a Markov chain with probability transition matrix W
and stationary distribution π, ε-mixing time is a measure of
how many iterations are needed for the probability distribution
of the chain to be ε-close to the stationary distribution with
respect to the TV distance.

Definition 10. Given a Markov chain with probability tran-
sition matrix W and stationary distribution π, the ε-mixing
time is defined as

Tmix(ε,W ) , inf
k≥0

{
sup

p0≥0:‖p0‖1=1

‖(W k)>p0 − π‖TV ≤ ε

}
.

Mixing-times and averaging times are closely related. In
fact, given probability transition matrix W , it is known that
Tave(ε,W ) and Tmix(ε, W̃ ) admit the same bounds up to
n log n factors [16, Theorem 7] for W̃ = I+W

2 – note [16,
Theorem 7] uses absolute time whereas we used number
of node wakeups to define ε-averaging and ε-mixing times;
therefore, we multiplied log(n) factor in [16, Theorem 7] by∑
i∈N ri = 2(n − 1) to convert absolute times to number

of node wakeups. Hence, designing algorithms with a smaller
mixing time, often leads to better algorithms for distributed
averaging (see also [47]). It is also known that mixing time
is closely related to hitting times [48, Theorem 1.1] for a
Markov Chain where the hitting time HW (i → j) is defined
as the expectation of the first time that the random walk with
transition matrix W reaches j starting from i.

Given a connected G = (N , E), suppose there are no self-
loops, i.e., (i, i) 6∈ E for i ∈ N . Uniform weights puj|i = 1

di
can

result in slow mixing on some graphs such as the barbell graph
(see Proposition 9) or other graphs like lollipop graphs [5]
which have both high degree and low degree nodes together.
A popular alternative to uniform weights {puj|i}j∈Ni

for i ∈ N
is the Metropolis weights M = [Mij ]ij where

Mij ,


1

max(di,dj) if (i, j) ∈ E ,
1−

∑
j∈Ni

1
max(di,dj) if i = j,

0 else,

and its lazy version uses

M̃ ,
I +M

2
,

which is popular in the distributed optimization practice [49].
The matrix M̃ is symmetric and positive semi-definite, unlike
the matrix M which may have negative eigenvalues that can
be close to −1 (therefore, it can be problematic for the conver-
gence of distributed algorithms, see e.g. [24]). Combined with
uniform wake-up of nodes, this leads to the following wake-up
probabilities for the Metropolis weights based system:

P M̃ij =
1

n
M̃ij ,

and the associated matrix

WP M̃ , EP M̃ [Wij ] =
∑
ij

P M̃ij Wij .

In particular, for any connected graph G = (N , E) with n
nodes, we have the following guarantees from [49, Lemma
2.1] on the lazy Metropolis weights:

max
i,j∈{1,2,...,n}

HM̃ (i→ j) ≤ 12n2,

and
λn−1(M̃) ≤ 1− 1

71n2
. (21)

By (9), we have also

WP M̃ = (1− 1

n
)I +

1

n
M̃.

Therefore, from (21), we get the bound

λn−1(WP M̃ ) ≤ 1− 1

71n3
,

for any connected graph G. Therefore, we conclude from
Theorem 3 that the ε-averaging time of Metropolis weights-
based gossiping on any graph is O(n3 log(1/ε)) – again using
the fact that − log(1−x) ≈ x for x close to 0. That said, in the
special case of the barbell graph, Metropolis weights perform
similar to uniform weights; both require Θ(n3 log(1/ε)) time
which is improved by the effective resistance-based weights
to Θ(n2 log(1/ε)). Furthermore, it can be shown that among
all the gossiping algorithms A(P ) with a symmetric P matrix
on the barbell graph, this rate is optimal with respect to ε and
n and cannot be improved3. In this sense, effective-resistance
based gossiping with P = P r leads to optimal performance
on the barbell graph with respect to scaling in n and ε among
all the symmetric choices of the P matrix.

Next, given any connected graph G, we obtain a bound on
the second largest eigenvalue of the WP r and show that the
averaging time with effective resistance weights Tave(ε, P r) =
O
(
Dn3 log(1/ε)

)
where D is the diameter4 of the graph. In

fact, if the diameter D ≤ 11, our bounds for the effective-
resistance weights improve upon that of Metropolis chain by
a (small) constant factor. This would for instance hold for
barbell graphs where D = 3 or for mid-size small world
graphs which are random graphs that arise frequently in real-
world applications where nodes can be reached from every
other node by a small number of steps [51]5.

Theorem 11. Let G be a graph with diameter D. The second
largest eigenvalue of the WP r matrix satisfies

λn−1(WP r ) ≤ 1− 1

6Dn3
.

3Note that when P is symmetric, it is doubly stochastic. For large n
and doubly stochastic P , by [16, Corollary 1], we have Tave(ε, P ) =

Θ
(
n log(1/ε)
1−λ2(P )

)
. On the other hand, Roch proved that [50, Section 3.3.1.]

any doubly stochastic P matrix on the barbell graph with n nodes sat-
isfies the bound 1

1−λ2(P )
= Ω(n). Therefore, we obtain Tave(ε, P ) =

Ω
(
n2 log(1/ε)

)
.

4The diameter of a graph is D = maxi,j∈N d(i, j) where d(i, j) is the
shortest path on the graph between nodes i and j.

5For example, we observe that the small world graphs that we randomly cre-
ated with parameters n = {5, 10, 15, 20, 25} and m = b0.2(n2−n)c using
the methodology described in the numerical experiments (see Section V-A)
satisfy D ≤ 5 on average over 104 independent and identically distributed
(i.i.d.) samples. Alternative construction techniques for these graphs are also
studied by Cont et al. [51] where it is shown that randomized community-
based small world graphs admit 2 log(n) upper bound almost surely on the
diameter diameter D. For instance, these graphs will satisfy D ≤ 11 almost
surely for n ≤ 240.
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Proof: It follows from our discussion in Section III-2 that
WP r is non-negative and doubly stochastic (see the paragraph
before Lemma 2). Therefore, for analysis purposes, we can
interpret WP r as the transition matrix of a Markov chain M
whose stationary distribution π is the uniform distribution. Our
analysis is based on relating the eigenvalues of WP r matrix
to the hitting times of the Markov chain M where we follow
the proof technique of [49, Lemma 2.1]. By Lemma 17 from
the appendix, we get

HWPr
(i→ j) ≤ n2(n− 1)

Rij
if j ∈ Ni.

For any graph, it is also known that6

min
i,j

Rij ≥
2

n
.

Therefore, for any neighbors i and j,

HWPr
(i→ j) ≤ n2(n− 1).

For any two vertices i and j not necessarily neighbors, i 6= j,
let v0(= i), v1, . . . , v`(= j) be a shortest path connecting i
and j. Then, by the sub-additivity property of hitting times,
for any i, j ∈ N , we obtain

HWPr
(i→ j) ≤ `n2(n− 1) ≤ Dn2(n− 1).

It follows from an analysis similar to [53] that

Tmix(
1

8
,WP r ) ≤ 8 max

i,j∈{1,...,n}
HWPr

(i→ j) + 1

≤ 8Dn3. (22)

From [53, eqn. (12.12)], we also have

Tmix(
1

8
,WP r ) ≥

(
1

1− λn−1(WP r )
− 1

)
ln(4).

Combining this with the estimate (22) implies directly

λn−1(WP r ) ≤ 1− 1

6Dn3
,

which proves the claim.

V. NUMERICAL EXPERIMENTS

In this section, first we provide numerical experiments to
show that {Rij}(i,j)∈E can be computed very efficiently in
a decentralized fashion for a given connected G = (N , E);
second, we demonstrate the benefits of using effective resis-
tances for both solving the consensus problem and also within
DPGA-W [27] and EXTRA [24] algorithms for consensus
optimization.

6This follows directly from the Rayleigh’s mononotonicity rule [6] which
says that if an edge is removed from a graph, effective resistance on any edge
can only increase. Therefore, the complete graph provides a lower bound for
Rij where Rij = 2/n (see also [52]).

A. Decentralized computation of L†

We tested D-RK, shown in Algorithm 2, and its normalized
version, i.e., D-RK on S−

1/2LX = S−
1/2B, for unweighted

small-world-type communication networks, and we compared
these randomized methods with deterministic (cyclic) Kacz-
marz method. Given positive integers n,m such that m ≥ n,
let E ∈ Sn denote the adjacency matrix of the small-wold
network parameterized by (n,m) such that Ei,i+1 = 1 for
i = 1, . . . , n − 1 and E1,n = 1, and the other m − n
entries are chosen uniformly at random among the remaining
upper diagonal elements of E and set to 1. We considered
n ∈ {10, 20} and for each n, we chose m such that the edge
density, 2m/(n2 − n), is 0.4 or 0.8. For each scenario, we
plot the average of log log(1 +

∥∥Xk − L†
∥∥
F
/
∥∥L†∥∥

F
) over

100 sample paths versus iteration counter k, i.e, number of
node wake-ups.

The results show that the randomized algorithms are slower
than their deterministic counterpart; this is the price to pay for
asynchronous computations. D-RK applied to the normalized
system was also faster than the standard D-RK, i.e., numer-
ically we see ρS < ρ as suggested by the inequality (6)
and Proposition 1. We also observed finite convergence on
every sample path numerically – the finite number of iterations
required for convergence depended on the sample path chosen;
hence, averaging iterates over sample paths led to the smooth
curves reported in Fig. 4. Given G = (N , E) with n nodes,
m edges, and some b ∈ Rn, Õ(m) convergence behavior
has already been observed for randomized Kaczmarz (RK)
methods to solve Laplacian systems Lx = b where Õ hides
some logarithmic factors in m, i.e., to compute L†b – this
would naively imply Õ(mn) RK iterations for computing L†,
e.g., see [54]. This might explain why numerically we observe
finite convergence in our tests.

Fig. 4: Performance of D-RK and normalized D-RK on small-world
G: top, left: (n,m) = (10, 18), top, right: (n,m) = (10, 36),
bottom, left: (n,m) = (20, 76), top, right: (n,m) = (20, 152).
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B. Consensus exploiting effective resistances

1) Classic vs ER based randomized gossiping: We compare
the performance of both protocols over an unweighted barbell
graph Kñ − Kñ with n = 2ñ nodes. Such a graph is
illustrated in Fig. 1. In our experiment, we set ñ = 20. Let
NR = {1, . . . , 20} and NL = {21, . . . , 40} represent the node
sets in right and left complete subgraphs (Kñ on the right and
left) of the barbell graph.

To initialize y0, we sample y0
i from N(100, 1) for i ∈ NL

and y0
i from N(0, 1) for i ∈ NR where N(µ, σ2) denotes the

normal distribution with mean µ and variance σ2 – this way
both lobes have significantly different local means. On the left
of Fig. 5, we plot log log(1 +

∥∥yk − ȳ1∥∥
2
/|ȳ|); and on the

right, we plot 1
20

∑
i∈NL

yki and 1
20

∑
i∈NR

yki vs k for both
protocols. The results show that randomized gossiping with
effective resistances is much faster.

Fig. 5: Performance of classic vs effective resistance based gossiping
on barbell K20 −K20: left: Relative error vs k, right: Average of
left and right lobes vs. k for both protocols.

2) Effective resistance-based gossiping vs state-of-the-art:
Gossiping algorithms have been studied vastly in the literature
and there have been a number of approaches [47], [55], [56],
[57], [58], [59], [60]. In light of Theorem 3, the fastest
gossiping algorithm A(P ) is obtained for the choice of P that
minimizes the second largest eigenvalue λn−1(WP ). Boyd
et al. show that such an optimal probability matrix P opt can
be computed by solving a semi-definite programming (SDP)
problem and develop a distributed subgradient method to
compute it [16, Section IV]. This method requires a decaying
stepsize and computation of the subgradient of the objective
λn−1(WP ) with respect to the decision variable P at every
iteration which itself requires solving a consensus problem at
every iteration. This can be expensive in practice in terms
of average number of communications required per node.
Furthermore, as the authors mention in [16], the subgradient
methods are relatively slow with at most sublinear convergence
behavior due to the decaying stepsize (compared to a linearly
convergent algorithm such as the D-RK method) and has no
simple stopping criterion that guarantees a certain level of
suboptimality. The resulting gossiping algorithm with optimal
choice of the probability matrix P opt is called the Fastest
Mixing Markov Chain (FMMC) in the literature [61]. Our
algorithm, the effective resistance-based gossiping algorithm
(ER), computes a probability matrix P r faster (with linear
convergence guarantees). Even-though the resulting P r proba-
bilities are not optimal, in the following numerical experiments

we illustrate that ER works well in practice in terms of total
number of communications required.

In our experiments, we compare average communication
times per node of ER and FMMC on barbell graphs and small
world graphs. This comparison consists of two stages: (i) pre-
computation stage (where the probability matrices P r and P opt

are computed up to a given tolerance) (ii) asynchronous con-
sensus stage (where we run ER and FMMC with probability
matrices P r an P opt obtained from the previous stage to solve
a consensus problem). Since FMMC does not have a simple
stopping criterion, we first compute the optimal probability
matrix P opt with a centralized algorithm based on interior-
point methods using the CVX software [62]. Similarly, we
compute L† for ER. Then, we stop the distributed subgradient
method to compute P opt when the iterate Pk at step k of
the method satisfies ||Pk−P opt||F

||P opt||F ≤ ε1 and ε1 is the given
precision level. We also stop the D-RK algorithm similarly
when the iterate Xk at step k satisfies ‖X

k−L†‖F
‖L†‖F ≤ ε1. In

the second (asynchronous consensus) stage, at every iteration,
a node contacts a neighbor to compute an average of their
state vectors, this is considered as one communication for the
node. For the barbell graph, the initial state vector y0

i ∈ R4

for consensus and is sampled from the normal distribution
N(500, 10) if i ∈ NL and from N(−500, 10) if i ∈ NR. We
stop the consensus stage for both algorithms when the iterates
yk satisfy the error ||y

k−ȳ||√
p||ȳ|| ≤ ε2 where ε2 is the tolerance

level.

Graph Method

Ave. comm.
per node
(pre-comp.)
(x103)

Ave. comm.
per node(asynch.

consensus

) Tot. ave.
comm.
per node
(x103)

K5 −K5 ER 1.5 81 1.5
FMMC 8.1 65 8.1

K10 −K10 ER 42.5 197.67 42.7
FMMC 90.6 129.60 90.7

K15 −K15 ER 313.4 313.31 313.8
FMMC 511.4 189.85 511.6

K20 −K20 ER 1299.9 432.98 1300.3
FMMC 10170.3 251.15 10170.5

K25 −K25 ER 3926.1 565.96 3926.7
FMMC >33x1010 287.30 >33x1010

TABLE I: The comparison of FMMC and ER on the barbell
graph

Table I compares the average number of communications
per node required for ε1 = ε2 = 0.01 accuracy for both
FMMC and ER on the barbell graph. We use the recommended
decaying stepsize αk = R/k from [16] for the distributed
subgradient method where the stepsize amplitude parameter R
is tuned to the graph to achieve the best performance. Results
are reported in Table I in which we compare the average
communication per node in the pre-computation stage (third
column of I) and in the second ( asynchronous consensus)
stage (fourth column of I) as well as a cumulative sum of
both stages (fifth column of I) when the number of nodes is
varied. We observe that consistently ER requires significantly
less communication per node in the pre-computation stage.
This is because at each step of the pre-computation, FMMC
computes a subgradient of the objective λn−1(WP ) with
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respect to P which requires solving a consensus problem
at every iteration, and this can be expensive in terms of
total number of communications required. Since FMMC finds
the optimal probabilities, the asynchronous consensus stage
with FMMC and target accuracy of ε2 = 0.1 requires less
communications by a factor of at most two. However, when
we consider the cumulative sum of both stages, we observe
that ER requires significantly less communication.

Next, we compare ER and FMMC on small world graphs
in Table II. We took small world graphs that have an edge
density of 2m

n2−n ≈ 0.4 (by choosing m = b0.2(n2 − n)c)
as the number of nodes n is varied and similar to previous
experiments we compared the pre-computation stage, asyn-
chronous consensus stage and the cumulative sum of both
stages in terms of total number of communications per node
with tolerance level ε1 = ε2 = 0.05. In the precomputation
stage, we terminate both algorithms (D-RK and the distributed
subgradient method) if the target accuracy ε1 = 0.05 is
achieved or if the average number of communications per node
reach out to a maximum limit of 106. ER required significantly
less communications per node than the maximum communica-
tion limits to operate, whereas FMMC algorithm reached the
maximum communication limit when the number of nodes was
10 or larger. In the second (asynchronous consensus) stage,
we used the calculated probabilities that approximate P r and
P opt from the pre-computation stage within the target accuracy
ε1 and the maximum communication limit. We observe that
ER performs consistently better than FMMC in the second
stage as well. Finally, the last column of Table II reports the
average communication required per node to complete both
stages, and we see that ER requires significantly less number
of communications. These results show that ER is a practical
algorithm in terms of communication efficiency on the small-
world graphs as well.

Graph Method
Ave. comm.
per node
(pre-comp.)

Ave. comm.
per node(asynch.

consensus

) Tot. ave.
comm.
per node

n = 5 ER 6.4 40.53 47
FMMC 11160.8 84 11.245

n = 10 ER 16.8 130.30 147
FMMC > 106 142.84 > 106

n = 15 ER 14.93 225.63 240.56
FMMC > 106 271,00 > 106

n = 20 ER 19.20 315.22 334.42
FMMC > 106 370.00 > 106

n = 25 ER 500.00 403.32 903.32
FMMC > 106 512.00 > 106

TABLE II: The comparison of FMMC and ER on the small
world graph
C. Effective resistance-based DPGA-W and EXTRA

We implemented our resistance-based communication
framework into the state of the art distributed algorithms:
DPGA-W [27] and EXTRA [24] on the regularized logistic
regression problem over a barbell graph Kñ−Kñ with n = 2ñ
nodes:

min
x∈Rp

n∑
i=1

fi(x), fi(x) , 1
2n
‖x‖2 + 1

Ns

Ns∑
`=1

log(1 + e−bi`a
>
i`x),

(23)

where Ns is the number of samples at each node,
{(ai`, bi`)}Ns

`=1 ⊂ Rp × {−1, 1} for i ∈ N denote the set of
feature vectors and corresponding labels. We let p = 20 and
Ns = 5. For each n ∈ {20, 40} and σ ∈ {1, 2}, we randomly
generated 20 i.i.d. instances of the problem in (23) by sampling
ai` ∼ N(1, σ2I) independently from the normal distribution
and setting bi` = −1 if 1/(1 + e−a

>
i`1) ≤ 0.55 and to +1

otherwise. Both algorithms are terminated after 104 iterations.
For benchmark, we also solved each instance of (23) using
MOSEK [63] within CVX [62]. We initialized the iterates
uniformly sampling each p components from the [500, 510]
interval for nodes in one Kñ, and from [−500,−490] for
nodes in the the other Kñ. The results for n = 20 and
n = 40 are displayed in Fig. 6 and Fig. 7, respectively.
We plotted relative suboptimality

∥∥xk − x∗
∥∥ / ‖x∗‖, func-

tion value sequence
∑
i∈N fi(x

k
i ) for the range [0, 105],

and consensus violation
∥∥xk − x̄k

∥∥ /√n, where k denotes
the (synchronous) communication round counter – in each
communication round neighboring nodes communicate among
each other synchronously once – and xk = [xki ]i∈N denotes
the k-th iterate; moreover, x̄k = 1 ⊗ x̄k, x̄k =

∑
i∈N x

k
i /n,

x∗ := 1⊗ x∗ and x∗ is the minimizer to (23).

Fig. 6: The suboptimality, function value and difference from aver-
age comparison of logistic regression using DPGA-W and EXTRA
algorithms with resistance weights and uniform probability weights
on barbell graph K10 − K10. Left: Data of the logistic regression
model is sampled using σ = 1, Right: Data is sampled using σ = 2.

Both DPGA-W7 and EXTRA uses a communication matrix
W that encodes the network topology. DPGA-W uses node-
specific step-sizes initialized at ≈ 1/Li for i ∈ N , where
Li denotes the Lipschitz constant of ∇fi, we adopted the
adaptive step-size strategy described in [27, Sec. III.D]; and
for EXTRA, we choose the constant step-size, common for
all nodes, as suggested in [24], i.e., we choose the stepsize as
2λmin(W̃ )/maxi∈N Li, where W̃ = (I +W )/2.

7In DPGA-W stepsize parameter γi is set to 1/ ‖ωi‖ for i ∈ N – see [27].
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Fig. 7: The suboptimality, function value and difference from aver-
age comparison of logistic regression using DPGA-W and EXTRA
algorithms with resistance weights and uniform probability weights
on the barbell graph K20−K20. Left: Data of the logistic regression
model is sampled using σ = 1, Right: Data is sampled using σ = 2.

For both algorithms, we compared two choices of W : Wu

based on uniform edge weights, and W r based on effective
resistances. In DPGA-W, the graph Laplacian is adopted for
uniform weights, i.e., Wu = Wu,DPGA-W := L, while for the
effective resistance-based weights, we set W r = W r,DPGA-W

where W r,DPGA-W

ii :=
∑
j∈Ni

Rij for i ∈ N and W r,DPGA-W

ij =
−Rij for (i, j) ∈ E and 0 otherwise. For EXTRA, Wu,EXTRA =
I − L/τ where τ = λmax(L)/2 + ε; on the other hand,
W r,EXTRA = I−W r,DPGA-W/τ where τ = λmax(W r,DPGA-W)/2 + ε
for ε = 0.01.

Figures 6 and 7 give the performance comparison of both
DPGA-W and EXTRA algorithms with effective resistance
and uniform weights in terms of suboptimality, convergence in
function values and consensus violation for the barbell graph
K10−K10 and K20−K20 respectively – the reported results
are averages over the 20 problem instances. The left panels of
Figures 6 and 7 report noise level σ = 1 whereas right panels
report σ = 2 (which corresponds to noisier data). In Figures 6
and 7, we observe that effective resistance weights improves
upon the uniform weights for both EXTRA and DPGA-W
methods consistently to solve the logistic regression problem
in terms of suboptimality, function values and consensus
violation signficantly. We also observe that with noisier data
(when σ = 2 as opposed to σ = 1), DPGA-W works
typically faster than EXTRA in terms of function values and
suboptimality. This is because when noise level σ gets larger,
the local Lipschitz constant Li of the nodes demonstrate higher
variability, and DPGA-W adapts to this variability as it uses a
stepsize that is different at each node in a way to adapt to Li,
whereas EXTRA uses a constant stepsize that is the same for
each node. On the other hand, in terms of consensus violation,
we see that EXTRA with effective resistance weights typically
outperforms DPGA-W with effective resistance weights.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we developed a linearly convergent distributed
algorithm for computing effective resistances over an undi-
rected connected graph G. Our method builds on an efficient,
distributed and asynchronous implementation of the Kaczmarz
method for solving linear Laplacian systems Lx = b. We
also presented an application of our algorithm to accelerate
distributed optimization algorithms including the EXTRA,
DPGA-W and randomized gossiping methods, and both nu-
merically and theoretically demonstrated that our algorithms
can accelerate existing state-of-the-art methods.

As part of our future work, we will investigate the finite
convergence properties of our algorithm to compute the effec-
tive resistances, suggested by the experiments. Finally, we will
investigate the applications of effective resistances to a wider
class of distributed optimization algorithms beyond EXTRA
and DPGA-W such as ADMM or other operator splitting-
based distributed methods.

APPENDIX A
PROOF OF PROPOSITION 1

We first prove the following lemma which shows that the
diagonal entries {si}ni=1 of S are related to the Frobenius norm
of L.

Lemma 12. The Laplacian L has the following property:

1

n2

n∑
i=1

1

si
≥ 1

||L||2F
, (24)

where si is defined by (3).

Proof: Note that

||L||2F =

n∑
i=1

n∑
j=1

L2
ij =

n∑
i=1

∑
j∈Ni∪{i}

L2
ij =

n∑
i=1

si,

where we used the fact that Lij = 0 for all (i, j) /∈ E .
Applying arithmetic-harmonic mean inequality to the sequence
{si}i∈{1,..,n}, we obtain

1

n
||L||2F =

1

n

n∑
i=1

si ≥ n
[ n∑
i=1

1

si

]−1

.

Multiplying both sides with 1/n leads to (24).
Since L and S are symmetric matrices so are L2 and

S−1. Let {λi(L)}ni=1 and {λi(S)}ni=1 denote the eigenvalues
of these matrices sorted in increasing order, i.e. λn is the
largest eigenvalue, λ1 is the smallest one. By the eigenvalue
interlacing result in [64, Chapter 2, Eq. (2.0.7)], we obtain8

nλ2(L2S−1) ≥ λ2(L2)

n∑
i=1

λi(S−1), (25)

where all the matrices have non-negative real eigenvalues as
both L and S are symmetric with non-negative eigenvalues.
Clearly, λ2(L2) = λ2(L)2 > λ1(L2) = 0. Furthermore, the
eigenvalues of L2S−1 and LS−1L are the same because if u

8We set l = n and it = 2 for t = 1, . . . , l in Eq. (2.0.7) in [64].
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is an eigenvector of the latter matrix corresponding to a non-
zero eigenvalue λ, then Lu would be the right eigenvector of
the former matrix with the same eigenvalue; similarly, if u
is a right-eigenvector of L2S−1 corresponding to a nonzero
eigenvalue λ, then LS−1u is an eigenvector of LS−1L with
the same eigenvalue. Therefore, since LS−1L is positive
semidefinite with λ1(LS−1L) = 0, we also have

λ1(L2S−1) = 0. (26)

Moreover, S is a diagonal matrix with diagonal entries
Sii = si; therefore, eigenvalues of S are given by si with
i = 1, 2, . . . , n. Hence (25) is equivalent to

nλ2(L2S−1) ≥ λ2(L)2
n∑
i=1

1

si
≥ λ+

min(L)2 n2

‖L‖2F
> 0, (27)

where the inequalities follow from Lemma 12 and the fact
that λ2(L) = λ+

min(L) > 0 due to G being a connected graph,
where λ+

min(·) denotes the smallest positive eigenvalue. From
(26) and (27), we conclude that λ2(L2S−1) is the smallest
positive eigenvalue of L2S−1, i.e.,

λ2(L2S−1) = λ+
min(L2S−1). (28)

Finally, using the fact that the eigenvalues of L2S−1 and
LS−1L are the same once again, we get λ+

min(LS−1L) =
λ+

min(L2S−1). Combining this with (27) and (28) leads to

1

n
λ+

min(LS−1L) =
1

n
λ+

min(L2S−1) ≥
(λ+

min(L)

||L||F

)2

,

which proves (6). Then, the fact that ρS ≤ ρ follows directly
from the definitions in (3) and (5).

APPENDIX B
PROOFS OF PROPOSITIONS 5 & 7

Proof of Proposition 5: Notice that the stationary distribution
π of a Markov chain with a doubly stochastic transition matrix
W is uniform, i.e. π(i) = 1

n for all i ∈ N ; therefore, the sum
(13) becomes

Φ(W ) = min
S⊂N
|S|≤ |N|2

1

|S|
∑

i∈S, j∈Sc

Wij . (29)

For both W = WPu and W = WP r , we can compute all the
entries of these matrices explicitly (see (12) and Lemma 16).
Then, it follows after a straightforward computation that the
minimum in (29) is attained when S is the set of the vertices
of one of the complete subgraphs of the barbell graph. Since
(i∗, j∗) is the only edge connecting S and Sc, it follows from
(12) that

Φ(WPu) =
1

ñ
[WPu ]i∗j∗ =

4

n3
,

Φ(WP r ) =
1

ñ
[WP r ]i∗j∗ =

1

n(n− 1)
.

Proof of Proposition 7: The proof is constructive. Given G =
(N , E), the conductance of a subset S ⊂ N with respect to
the probability transition matrix W is defined as

ΦS(W ) :=
1

π(S)

∑
i∈S,j∈SC

π(i)Wij . (30)

With slight abuse of notation, for a subgraph H0 with a vertex
set S0, we define ΦH0(W ) := ΦS0(W ). Note that by the def-
inition of conductance (13), we have Φ(W ) = minS ΦS(W ).

We say that a vertex set S ⊂ N on graph G = (N , E , w) is
a one-cut set if its complement N \S is a connected subgraph
of G. Similarly, we define two-cut set S2 ⊂ N to be a set
whose complement N \S2 consists of two disjoint non-empty
connected subgraphs H1 and H2 of G. We define

G1 := the left-most clique of the c-barbell graph. (31)

For c0 ∈ [2, c], we also define

Gc0 := c0-barbell subgraph that includes the left-most
c0 cliques of the c-barbell graph, (32)

For example, G2 is the barbell graph that contains the left-
most two complete subgraphs; whereas Gc is the c-barbell
graph. Notice that matrices WPu and WP r are symmetric and
Markov chains with these transition matrices have the uniform
distribution as a stationary distribution. Lemmas 13 and 14 are
on the conductance properties of one-cut and two-cut sets on
the c-barbell graph with respect to these transition matrices. In
particular, they imply that a set S with minimal conductance
should be a one-cut set and has to be given by the vertices of
a subgraph Gc0 for some c0 ∈ [1, c].
The proof steps of Lemma 14 derives the conductance values
of such subgraphs explicitly

ΦGc0 (WPu) =
1

c0

1

cñ3
, ΦGc0 (WP r ) =

1

2c0ñ(cñ− 1)
. (33)

Both of the expressions at (33) are minimized for the choice
of c0 = b c2c. Therefore, the minimal conductance is attained
for the subgraph Gb c2 c. Plugging c0 = b c2c into the expressions
above directly yields the graph conductance values at (18). The
bounds (19) and (20) follow from Theorem 3 and inequalities
(15).

APPENDIX C
PROOF OF PROPOSITION 9

It follows from Corollary 15 and Lemma 16 that the second
largest eigenvalues of W̄Pu and W̄P r are given by:

λn−1(WPu) = 1− 8

n2(n− 2)
+ Θ(

1

n4
),

λn−1(WP r ) = 1− 1

n(n− 1)
−Θ(

1

n3
).

This implies directly λn−1(WP r ) = 1 − Θ( 1
n2 ) and

λn−1(WPu) = 1 − Θ( 1
n3 ), which completes the proof of

Proposition 9.

APPENDIX D
SUPPORTING LEMMAS

The following two lemmas are about the conductance prop-
erties of the subsets of a c-barbell graph.

Lemma 13. Consider a reversible Markov chain on a c-
barbell graph with a uniform stationary distribution. Let H0

be a subgraph of G whose vertex set is a non-empty two-cut set
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S0 satisfying |S0| ≤ |N |2 . Then, there exists another subgraph
H̃0 of G such that ΦH̃0

(W ) < ΦH0
(W ).

Proof of Lemma 13: Let C1 and C2 be the vertex sets of
two disjoint non-empty connected subgraphs within N \ S0

satisfying N = C1 ∪ S0 ∪ C2. Note that C1 ∩ C2 = ∅
implies either |C1 ∪ S0| ≤ |N |

2 or |C2| ≤ |N |
2 . Using the

fact that the transition matrix W of a reversible Markov
chain with a uniform stationary distribution is symmetric, the
definition (30) implies ΦC1∪S0(W ) = ΦC2

(W ). Without loss
of generality, choose H̃0 to be the subgraph with vertices
S̃0 = C1 ∪ S0 with |C1 ∪ S0| ≤ |N |

2 (otherwise, pick the
subgraph with vertex set C2 instead), then

ΦH0
(W ) =

1

|S0|

( ∑
i∈S0
j∈C1

Wij +
∑
i∈S0
j∈C2

Wij

)

>
1

|S0|
∑
i∈S0
j∈C2

Wij >
1

|S̃0|

∑
i∈S̃0
j∈C2

Wij = ΦH̃0
(W ),

which proves Lemma 13.

Lemma 14. Consider a Markov chain on a c-barbell graph
with a probability transition matrix W . If W = WPu or W =
WP r , then for any subgraph H0 having a one-cut vertex set
S0, there exists a subgraph Gc0 for some c0 ∈ [1, c] such that
ΦGc0 (W ) ≤ ΦH0

(W ) where Gc0 is defined by (31) and (32).

Proof: For any subgraph H0 having a one-cut vertex set S0,
we can always a find a subgraph Gc0 with vertex set Vc0
for some c0 ∈ [1, c] such that either Vc0−1 ⊂ S0 ⊂ Vc0
or Vc0−1 ⊂ Sc0 ⊂ Vc0 (with the convention that Gc0 is a
singleton graph with a vertex set V0 consisting of a single
node). Let Hc0 be the subgraph with vertex set Sc0. Since
ΦH0

(W ) = ΦHc
0
(W ) for both W = WP r and W = WPu ,

without loss of generality we can assume that H0 satisfies the
property Vc0−1 ⊂ S0 ⊂ Vc0 (otherwise, we can replace H0

with Hc0 in the proof below). It follows after a straightforward
computation (similar to the proof technique of Lemma 16)
that transition probability matrices WPu and WP r on c−Kñ

admit the explicit formula

[WPu ]i∗j∗ =
1

cñ2
, [WPu ]i∗j =

1

2cñ2

(2ñ− 1

ñ− 1

)
,

[WPu ]ij =
1

cñ(ñ− 1)
,

and

[WP r ]i∗j∗ =
1

2(cñ− 1)
, [WP r ]i∗j =

1

ñ(cñ− 1)
,

[WP r ]ij =
1

ñ(cñ− 1)
,

where i∗ and j∗ denote two adjacent nodes belonging to
different complete subgraphs of c−Kñ, i.e., those with degree
ñ, and (i, j) ∈ E or (i∗, j) ∈ E such that i and j denote nodes
in c−Kñ with degree ñ−1. It is worth noting that [WP r ]i∗j∗

is greater than [WPu ]i∗j∗ as in the Kñ −Kñ case. Hence,

ΦH0(WPu) =
1

|S0|
∑
i∈S0
j∈Sc

0

[WPu ]ij >
1

c0ñ

1

cñ2
= ΦGc0 (WPu).

In the case of W = WP r , let P0 ⊂ S0 be the subset of nodes
in the subgraph Kñ that contains nodes from both S0 and SC0
– if no such Kñ exists, then S0 corresponds to a subgraph
Gc0 for some c0 ∈ [1, c]. Now consider the former case, let us
denote m0 := |P0| < ñ. The number of edges between P0 and
SC0 is given by m0(ñ−m0). This is due to the fact that each
node in P0 has exactly (ñ−m0) many edges that connects S0

to its complement. We have also m0(ñ−m0) ≥ ñ
2 for ñ ≥ 2.

This yields

ΦH0
(WP r ) =

1

|S0|
∑
i∈S0
j∈Sc

0

[WP r ]ij ≥
1

|S0|
m0(ñ−m0)

ñ(cñ− 1)

≥ 1

|c0ñ|
1

2(cñ− 1)
= ΦGc0 (WP r ).

Corollary 15. Under the setting of Proposition 8, assume that
the weight matrix w is normalized, i.e.,

∑n
j=1 wij = 1 for all

i ∈ N . Then W = w is a doubly stochastic matrix and the
eigenvalues of W become

• λa = 1 with multiplicity one,
• λb = −1 + (A+G) + F with multiplicity one,
• λc = D − C with multiplicity 2ñ− 4,
• λ± = 1

2

(
F +G−A ±

√
S
)

,

where A,B,C,D,E, F,G and S are as in Proposition 8.
Moreover, λ+ satisfies

λ+ =
1

2

(
F +G−A +

√
(F −G+A)2 + 4BE

)
, (34)

and is the second largest eigenvalue, i.e. λn−1(W ) = λ+.

Proof: Since w is normalized, Proposition 8 applies with A+
G+E = 1 and B + F = 1. Thus eigenvalues simplify to the
forms given in the statement. Note that

√
S =

√
(F +G−A)2 − 4(FG−BE −AF )

=
√

(F −G+A)2 + 4BE ≥ 0.

Therefore, λ+ satisfies the equality (34). Note that λa = 1 is
the unique largest eigenvalue since W is stochastic. It remains
to show that λ+ is the second largest eigenvalue. We can write

λ+ =
1

2

(
F +G−A+ |F −G+A|

√
1 +

4(n− 1)B2

(F −G+A)2

)
≥ 1

2

(
F +G−A+ |F −G+A|

)
.

There are two cases: F ≥ (G−A) or F < (G−A). In both
cases, we observe that λ+ ≥ F ≥ 0. Since A + G + E = 1,
we also have A+G−1 = −E ≤ 0. Therefore λb = F −E ≤
F ≤ λ+. Furthermore, λc = D − C ≤ F = D + (ñ − 2)C
since C ≥ 0; therefore λc ≤ F ≤ λ+. Finally, λ+ ≥ 0 since
S ≥ 0. These observations show that λ+ is non-negative and
is the second largest eigenvalue.

Lemma 16. Consider the setting of Proposition 8:
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(i) If W = WPu , then Proposition 8 applies with A = Au,
B = Bu, C = Cu, D = Du and G = Gu where

Au =
2

n2
, Bu =

n− 1

n2(0.5n− 1)
, Cu =

2

n(n− 2)
,

Du =
n3 − 3n2 + 2n+ 2

n2(n− 2)
, Gu = 1− n+ 1

n2
.

The second largest eigenvalue of WPu is given by

λn−1(W̄Pu) = 1− n2 + n− 8

2n2(n− 2)
+

1

8

√
Sun

= 1− 8

n2(n− 2)
+ Θ(

1

n4
),

for Sun = 4n3+24n2−156n+192
(0.5n−1)2n3 .

(ii) If W = WP r , then Proposition 8 applies with A = Ar,
B = Br, C = Cr, D = Dr and G = Gr where

Ar =
1

2(n− 1)
, Br =

2

n(n− 1)
, Cr =

2

n(n− 1)
,

Dr =
n2 − 2n+ 2

n(n− 1)
, Gr = 1− 1.5n− 2

n(n− 1)
.

Moreover, the second largest eigenvalue of WPu is given
by

λn−1(W̄P r ) = 1− 1

(n− 1)
+

1

2

√
Srn

= 1− 1

n(n− 1)
−Θ(

1

n3
),

for Srn = 4n−8
n(n−1)2 .

Proof: We first compute the entries of both Pu and P r

matrices explicitly for the barbell graph (i.e. Kñ−Kñ). Former
one can be found directly from degrees of the nodes,

Puij =

{
1

2ñ(ñ−1) if i /∈ {i∗, j∗},
1

2ñ2 if i ∈ {i∗, j∗}.
Calculating P r requires us to find effective resistances on the
graph. Following definition of resistance allows us to calculate
them using Cayley’s formula for complete graphs,

Rij =
# of spanning trees passing through (i, j)

# of spanning trees
.

Remember that complete graph with ñ vertices has ññ−2

spanning trees, therefore barbell graph has ñ2ñ−4(ññ−2 ×
ññ−2) spanning trees. Let K be the number of trees passing
from an edge then K ×

(
ñ
2

)
= ññ−2(ñ − 1). So we have

K = 2ññ−3. This implies that number of spanning trees pass-
ing from an edge is 2ñ2ñ−5 on barbell graph, and definitely
the number of spanning trees passing from the edge (i∗, j∗)
is ñ2ñ−4. This implies, Rij = 1 if (i, j) ∈ {(i∗, j∗), (j∗, i∗)},
Rij = 2

ñ otherwise. Once we have explicit characterizations
of Pu and P r, using Lemma 2 we can compute the entries
of WPu and WP r to be given as in (i) and (ii). The second
largest eigenvalues of matrices W̄Pu and W̄P r follow from
Corollary 15.

Lemma 17. [65, Eqn. (2.2)] Let W be the transition matrix
of a Markov chain with stationary distribution π. Let j be a
neighbor of i, i.e. j ∈ Ni, then HW (i→ j) ≤ (πjWji)

−1.
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Supplementary File
PROOF OF PROPOSITION 8

The proof follows by adapting the proof of [44, Proposition 5.1] to our setting with minor modifications. It is based on
exploiting the symmetry group properties of the barbell graph with algebraic techniques. We first give relevant background
material below before going into the details of the proof.

Background Material

Consider a weighted graph G = (N , E , w). A permutation p : N → N is a mapping that rearranges the vertices, i.e.
it is a bijection from the node set N to itself. We consider a permutation group H , which is a group whose elements
are permutations of N and whose group operation is the composition of permutations in H . By the group property, if two
permutations s1, s2 ∈ H , then the composition s1s2 ∈ H and in particular the identity permutation e which maps all the
elements of N to itself is also contained in H . The group that contains all the n! permutations defined on N is denoted as
Sn.

The direct product (H1 ×H2) of two groups H1, H2 is defined as the group that consists of elements from the Cartesian
product of H1 and H2 with the elementwise composition, i.e. (h1, h2) ∈ (H1 × H2) if and only if h1 ∈ H1 and h2 ∈ H2

and if (h1, h2) ∈ (H1 × H2) and (h̃1, h̃2) ∈ (H̃1 × H̃2) then the composition operation · over (H1 × H2) is defined as
(h1, h2) ·(h̃1, h̃2) = (h1h̃1, h2h̃2). A subgroup M of a group H is normal if for all h ∈ H and m ∈M we have hmh−1 ∈M .
The semidirect product H1 nH2 of two groups H1 and H2 is the group that consists of elements h = h1h2 with h1 ∈ H1

and h2 ∈ H2 and the subgroup H1 is normal in H1 n H2 with the condition H1 ∩ H2 = {e}. The orbit Oi of an element
i ∈ N , under a permutation group H is the set Oi := {v ∈ N | ∃s ∈ H s.t. s(v) = i}. In other words, the orbit of node i is
the set of vertices that can be mapped to i by an element of the permutation group H . This definition creates an equivalence
relation ∼ on N ; for i, j ∈ N , we say i ∼ j if Oi = Oj . In particular, equivalence classes form a partition of N .

A permutation s is called an automorphism of the weighted graph G if the weight matrix w is invariant under s, i.e. if
w(i, j) = w(s(i), s(j)). From this definition, an automorphishm s also satisfies W (i, j) = W (s(i), s(j)) where W (i, j) =
w(i, j)/

∑
j∈Ni

w(i, j) is the transition probability. We are interested in such permutations that preserve the structure of w and
therefore W . The group of all automorphisms with the operation of composition of permutations is called the automorphism
group of the graph and is denoted by Aut(G). Let S be a subgroup of Aut(G) and consider the orbits {Oi}i∈N under the
permutation group S which partition the set N . We define orbit graph to be the graph whose vertices consist of the equivalence
classes Oi for i ∈ N and we consider an induced Markov chain on the orbit graph with probability transition probabilities
defined as

WS(Oi, Oj) =
∑
j′∈Oj

W (i, j′). (35)

This Markov chain is also called the orbit chain. It can be shown that the definition of the weights WS above does not depend
on the choice of the element i from the set Oi (see e.g. [44]).

Proof

First, we consider the automorphism group of the barbell graph Kñ−Kñ with edge weights given by Proposition 8. Consider
the nodes i∗ and j∗ that connect the complete subgraphs of the barbell graph and without loss of generality assume that we
enumerate the nodes so that i∗ = ñ, j∗ = ñ + 1 and a node i < ñ is on the complete subgraph on the left hand-side and
any node j > ñ + 1 is on the complete subgraph on the right-hand side. We see from the symmetry structure of W that if
we take any two nodes from a complete subgraph and permute them, this would be an automorphism. Similarly, swapping
the two complete subgraphs between them would be an automorphism; i.e. the permutation C2 : N → N that maps i C27→ −i
mod (n+ 1) is an automorphism. It follows from these observations that the automorphism group of Kñ −Kñ is the group
C2 n (Sñ−1 × Sñ−1) (see also [44] for more details). It is known that for any subgroup S of the automorphism group, the
eigenvalues of the transition matrix WS defined by (35) should also be an eigenvalue of the transition matrix W (see e.g. [44,
Section 3]). Note that the square matrix WS has dimension nS × nS where nS ≤ n, so the set of eigenvalues of WS are a
subset of the set of all eigenvalues of W . We are going to use this result to prove the Proposition 8. Next, we consider the
eigenvalues of the transition matrices WS of the orbit chains under subgroups S of C2 n (Sñ−1 × Sñ−1):

a) The orbit chain under C2 n (Sñ−1 × Sñ−1) (Figure 8) has the transition matrix[
A+G

A+G+E
E

A+G+E
E

(n−1)F+E
(n−1)F

(n−1)F+E

]
.

Since λa = 1 is an eigenvalue, and its trace is the sum of eigenvalues; it follows that the other eigenvalue of this matrix is
given by λb = −1 + A+G

A+G+E + F
F+B .
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Fig. 8: Orbit graph under C2 n (Sñ−1 × Sñ−1)

Fig. 9: Left: Orbit graph under C2. Right: Orbit graph under C2 n (Sñ−2 × Sñ−2)

b) Consider the orbit chain under C2 illustrated on the left panel of Figure 9. This orbit graph has two orbits under
permutation Sñ−1: One of them contains only one node (the node with a self-loop with weight (A+G)) and the other orbit
has the remaining ñ − 1 nodes. Notice that the latter orbit has identical ñ − 1 elements and therefore the permutation group
C2 n (Sñ−2 × Sñ−2) fixes one of the nodes having a loop with weight D and permutes the remaining ñ − 2 nodes among
themselves without affecting the orbit with one node. Therefore, by [44, Thereom 3.1], the eigenvalues of the transition matrix
W ′ of the orbit graph obtained by the permutation group S = C2 n (Sñ−2×Sñ−2) (illustrated on the right panel of Figure 9)
are also eigenvalues of the transition matrix W . The transition matrix W ′ is 3× 3 with three eigenvalues, including λa and λb
that we have already found at part (a). The third eigenvalue λc can be computed from the transition matrix W ′ of the orbit
chain under C2 n (Sñ−2 × Sñ−2): 

A+G
(ñ−1)B+A+G ∗ ∗

∗ D
(ñ−2)C+D+B ∗

∗ ∗ D+(ñ−3)C
B+D+(ñ−2)C

 ,
where we use ∗ to denote the entries of this matrix that will not be relevant to our discussion. In particular, the eigenvalues of
this matrix will be λa, λb and λc; the latter will be an eigenvalue of W with multiplicity 2ñ − 4. Again, using the fact that
the trace of a matrix is equal to the sum of its eigenvalues, we obtain

λc =
D − C
F +B

.

c) Lastly, orbit chain under (Sñ−1 × Sñ−1) consists of four orbits: (ñ − 1) points in the left and right complete graphs and
vertices i∗ and j∗ as illustrated in Figure 10.

Fig. 10: Orbit graph under Sñ−1 × Sñ−1

This orbit chain has the transition matrix of the form
F

B+F
B

B+F 0 0
E

A+E+G
G

A+E+G
A

A+E+G 0

0 A
A+E+G

G
A+E+G

E
A+E+G

0 0 B
B+F

F
B+F

 .
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After a straightforward computation, it can be checked that this matrix has the eigenvalues, 1, λ+, λ−, (−1 + A+G
A+E+G + F

B+F )
where

λ± =
1

2

[
F

B + F
+

G−A
A+ E +G

±
√
S

]
,

and S =

(
F

B+F + G−A
A+E+G

)2

− 4(FG−BE−AF )
(B+F )(A+E+G) .

Remark 18. Boyd et al. [44] studied the case Wi∗i∗ = 0 = Wj∗j∗ where similar orbit chains and graphs arise. The proof of
Proposition 8 given here is a minor modification of the original proof of Boyd et al. [44, Proposition 2.2] and extends it to
the more general case where Wi∗i∗ or Wj∗j∗ can be strictly positive.
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