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ABSTRACT

Tensors, or N-dimensional arrays, are increasingly used to represent
multi-dimensional data. Sparse tensor decomposition algorithms
are of particular interest in analyzing and compressing big datasets
due to the fact that most of real-world data is sparse and multi-
dimensional. However, state-of-the-art tensor decomposition algo-
rithms are not scalable for overwhelmingly large and higher-order
sparse tensors on distributed platforms. In this paper, we use the
MapReduce model and the Spark engine to implement tensor fac-
torizations on distributed platforms. The proposed CSTF algorithm,
Cloud-based Sparse Tensor Factorization, is a scalable distributed
algorithm for tensor decompositions for large data. It uses the co-
ordinate storage format (COO) to operate on the tensor nonzeros
directly, thus, eliminating the need for tensor unfolding and the
storage of intermediate data. Also, a novel queuing strategy (QCOO)
is proposed to exploit the dependency and data reuse between a
sequence of tensor operations in tensor decomposition algorithms.
Details on the key-value storage paradigm and Spark features used
to implement the algorithm and the data reuse strategies are also
provided. The queuing strategy reduces data communication costs
by 35% for 3rd-order tensors and by 31% for 4th-order tensors over
the COO-based implementation respectively. Compared to the state-
of-the-art work, BIGtensor, CSTF achieves 2.2X to 6.9X speedup
for 3rd-order tensor decompositions.
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1 INTRODUCTION

Tensors, or multi-dimensional vectors, naturally lend themselves to
representing multi-dimensional data. Tensor decomposition algo-
rithms appear in numerous domains and applications such as data
mining [11, 16], machine learning [1, 9], computer vision [27, 28],
and quantum chemistry [15]. Recently, the size of tensor data has
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become overwhelmingly large, including tens to hundreds of mil-
lions and even billions of nonzeros in real tensor-based applications.
This has demanded the need for developing novel algorithms and
frameworks that implement tensor operations on parallel and dis-
tributed systems for better performance and scalability. Specifically,
implementations of tensor factorization algorithms on fault-tolerant
frameworks such as Hadoop [8] and Spark [30] are useful as they
can execute in data-center settings.

Many successful advances have been made to scale large ten-
sor decomposition algorithms to distributed platforms using the
MapReduce paradigm [5] some of which are GigaTensor [11],
HATEN? [10], and BIGtensor [19]. The previous MapReduce imple-
mentations of tensor algorithms such as BIGtensor, use the Hadoop
framework [8]. These implementations do not support higher-order
tensors and are implemented with tensor unfolding which creates
large memory footprints. The data-reuse and locality amongst dif-
ferent tensor operations in tensor factorization methods are not
exploited efficiently in these implementations.

In this paper we propose CSTF, Cloud-based Sparse Tensor Factor-
ization, a scalable distributed algorithm for tensor decompositions
on large data. CSTF uses the open source Apache Spark [30] plat-
form, an extension to the MapReduce [5] framework. Our work
focuses on the performance optimization of the CANDECOMP/-
PARAFAC (CP) decomposition on Spark. The running time of a
typical CP decomposition on an N-order tensor is dominated by
a sequence of Matricized Tensor Times Khatri-Rao product (MT-
TKRP) operations along each mode of the tensor. The mode-centric
nature of the tensor computations is a major challenge when design-
ing high-performance algorithms for higher-order sparse tensors.
Previous implementations of tensor algorithms on distributed sys-
tems [4, 11-13] are mainly based on improving the performance of
a single tensor operation such as the MTTKRP. In this work, we
introduce algorithms to optimize the performance of an entire se-
quence of MTTKRP operations within the CP decomposition. This
leads to a scalable implementation of higher-order tensor decompo-
sitions. To the best of our knowledge, we are the first to investigate
sparse tensor CP decompositions for tensors of order 3 or higher
on Spark. Major contributions of the work are as follow:

1. The CSTF-COO algorithm which uses the key-value storage
paradigm to enable explicit computations on the tensor nonze-
ros. Our proposed algorithm uses the coordinate storage format
(COO) to eliminate the need to unfold the tensor and to reduce
redundant computation in tensor operations such as MTTKRP.

2. The CSTF-QCOO algorithm detects data reuse between different
MTTKRP operations inside tensor factorization methods. CSTF-
QCOO uses the key-value paradigm as well as data-persistence
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capabilities provided by Spark. As a result, data communication
over the network is reduced in the tensor factorization algorithm.
3. We compare the performance of CSTF on up to 32 nodes with
the state-of-the-art implementations of tensor algorithms us-
ing the MapReduce model, namely BIGtensor. CSTF-COO and
CSTF-QCOO achieve up to 6.9x and 6.5 speedup for 3rd-order
CP decompositions over BIGtensor respectively. The data-reuse
strategy in the CSTF-QCOO algorithm reduces the amount of
shuffled data by up to 35 percent compared to CSTF-COO.

The rest of this paper is organized as follows. Section II intro-
duces notations and provides a brief introduction to tensor com-
putations. Section III reviews state-of-the-art approaches to the
optimization of tensor decompositions. Section IV describes the
proposed CSTF algorithms, including CSTF-COO and CSTF-QCOO.
Section V provides the experimental evaluations and results analy-
sis. Section VI concludes the work.

2 BACKGROUND

This section presents preliminary definitions and notations for
tensor computations and discusses the Spark framework and the
MapReduce programing models.

2.1 Tensor Notation

A tensor can be thought of as a multidimensional array. The order of
a tensor is the number of dimensions, also known as ways or modes.
First-order tensors, vectors, are represented by lowercase letters,
e.g. a. Second-order tensors, matrices, are shown with boldface
capital letters, e.g. A. Tensors of order three or higher are denoted
by boldface Euler script letters, e.g. X. Scalars are represented by
lowercase letters, e.g. a, and the scalar element at position (i, j, k)
of a third-order tensor X is denoted by X (i, j, k). We use the colon
notation, where a colon represents all nonzeros in an index on that
mode. For example, A(m, :) represents the m-th row of the matrix A.
Table 1 summarizes the notations used in this paper. We use I, J, K
to represent the dimensions of a 3-order tensor.

Matricization, also known as unfolding or flattening, is the pro-
cess of reordering the elements of an N-way array into a matrix.
The mode-n matricization of a tensor X is shown with X,y and
arranges the mode-n fibers to be the columns of the resulting ma-
trix. A fiber of a tensor is defined by fixing every index but one.
A three-way tensor has three kinds of fibers, denoted by X(:, j, k),
X(i,:, k) and X(i, j, :). Given a three-way tensor X € RI*/XK X(1)
is the mode-1 matricization is of dimension I X JK.

2.2 CANDECOMP/PARAFAC Decomposition

The CANDECOMP/PARAFAC (CP) decomposition algorithm fac-
torizes a tensor into a sum of rank-one tensors. The most commonly
used approach for computing the CP decomposition is the Alternat-
ing Least Squares (ALS) method. The ALS method for a 3rd-order
tensor has three steps. Each step performs an update for one of the
three factor matrices by keeping the other two matrices as shown
in Algorithm 1. The result matrices from tensor factorization A, B,
and C are called the factor matrices.
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Table 1: Table of symbols

Symbol Definition

X A tensor

X(n) Mode-n matricization of a tensor
R Rank of a tensor
N Order of a tensor

nnz nonzeros of a tensor X
o) Khatri-Rao product
® Kronecker product
* Hadamard product

AT Transpose of matrix A

mf Pseudoinverse of matrix M

bin()  function that converts nonzeros elements of to 1

Algorithm 1 CP-ALS for a 3rd-order tensor

Require: X: A 3rd order tensor R: The rank of factorization
Ensure: [1;A,B,C]

1: repeat

2 Ae—X;)(CoB)BTB+CTC)

Normalize columns of A and store the norms as A

B — X3 (COA)ATA*CTC)f

Normalize columns of B and store the norms as A

C —X(3(BOA)ATA+BB)

Normalize columns of C and store the norms as A
until stop criterion satisfied or maximum iterations reached

2.3 Matricized Tensor Times Khatri-Rao
Product

MTTKRP is the key tensor operation and a compute-intensive op-
eration in the CP decomposition algorithm. Equation 1 shows MT-
TKRP operations along the first mode of the tensor, meaning that
the unfolded tensor along the first mode gets multiplied with the
Khatri-Rao product of factor matricies B and C:

M = X(;(C©B) oy

If tensor X is of size I X J X K, then matrices B and C are of size
J X R and K X R. The result matrix of explicitly constructing the
Khatri-Rao product COB is a dense matrix of size J X K X R, which is
very large and is defined as the intermediate data explosion problem
in [11].

2.4 Spark and the MapReduce Programming
Model

MapReduce [5] is a programming model which defines Map and
Reduce functions that are capable of processing records composed
of key-value pairs. Key-value pairs represent data with an identi-
fier, a key, and some associated data, the value. Spark [30] is an
extension of the MapReduce programming model [5] which uses
an abstraction called RDDs [29] to represent datasets. The dataset
representation used by Spark, an RDD, is an immutable collection
of records which may be composed of a key-value pair or simply a
value which can have records partitioned across multiple proces-
sors connected through a network. Operations such as map, filter,
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join, reduce, and more are performed on an RDD. These RDD opera-
tions are classified as transformations and actions. Transformations
apply a single function to many data items such as map, filter, and
join. By contrast, actions require computations to be performed
and data returned to the user, such as in the reduce function. Spark
extends MapReduce by realizing a directed-acyclic-graph (DAG)
representation for datasets. An RDD can be represented as a key-
value pair and may be partitioned across processors based on the
key in each record. Depending on the transformations performed,
data from separate partitions may need to be shuffled. A shuffle is
an operation which requires data from one or more partitions to
be on the same processor to complete an operation. Examples of
these types of operations are a join where records from two RDDs
with similar keys are combined and reduceByKey which combines
records with the same key in the same RDD together into a single
record. Depending on which processor each record is located on,
performing one of these operations will induce a shuffle where
each processor will decide which records must be transmitted over
the network. Shuffles are often expensive operations because they
require data communication over the network.

3 RELATED WORK

A large class of previous work has proposed high-performance im-
plementations of tensor algorithms on shared memory architectures
[17], co-processors such as GPUs [18], and MPI-based implemen-
tations on distributed memory platforms. DfacTo [4] accelerates
tensor decomposition methods on distributed platforms by using
the Message Passing Interface (MPI). DfacTo lowers MTTKRP into
two successive sparse matrix-vector multiplication (SpMV) opera-
tions to improve the performance of tensor decomposition methods.
A hyper-graph partition-based method for the distributed imple-
mentation of tensor algorithms is presented by Kaya et. al. [13]
to maintain an efficient trade-off between load balance and com-
munication costs. DMS [23], based on SPLATT [25], proposes a
new distributed CPD-ALS algorithm where a 3D decomposition is
used to avoid complete factor replication and communication. A
hybrid MPI+OpenMP implementation is used in DMS. Other work
such as [24] and Shaden et. al. present decomposition techniques
that avoid complete factor replication and communication in tensor
computations and eliminate costly pre-processing steps. Kaya et.
al. [14] proposes a novel computational scheme using dimension
trees to effectively parallelize MTTKRPs in CP-ALS on shared and
distributed memory architectures. Tensor computations have also
been optimized for GPU architectures for key tensor operations
in tensor factorization algorithms [18] and tensor contraction [21].
Liu et al. [18] proposed a new storage format called F-COO for
optimizing sparse tensor computations on GPUs.

Distributed Computing on Cloud Platforms: Previous works
have also provided implementations of tensor operations on dis-
tributed platforms using the MapReduce programming paradigm.
MapReduce is a distributed programming model for processing mas-
sive datasets, which handles the problems of fault-tolerance, load
balancing, and massive scaling automatically. Hadoop [8] is an open
source implementation of MapReduc. Kang et. al. proposed GigaTen-
sor [11], a large-scale tensor decomposition implementation on the
Hadoop platform by utilizing the MapReduce framework. Park et. al.
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propose DBTF [20], a distributed algorithm and implementation for
Boolean tensor factorization on Spark, in which Boolean tensors are
composed of 0’s and 1’s. HATENZ2 [10] is based on the MapReduce
paradigm and supports two commonly used tensor factorization
algorithms on Hadoop—PARAFAC and Tucker. DisTenC [6] imple-
ments a new CP-based tensor completion algorithm on Spark. In
[2], a Spark+MPI system for integrating MPI-based programs with
Spark is used to implement CP decomposition.

Recently, BIGtensor [19] has been introduced which is a large-
scale tensor-mining library that handles a variety of tensor compu-
tations on Hadoop including tensor decomposition. BIGtensor is
considered the state-of-the-art tool for distributed tensor factoriza-
tions. For distributed CP decomposition on MapReduce frameworks,
BIGtensor uses a similar approach to GigaTensor [11]. Our work
differs from the current implementations of tensor operations on
distributed performs in that it uses Spark to provide implementa-
tions which eliminate the need to unfold the tensor, reduces the
memory footprint, and also enables the reuse of factors across
consecutive MTTRKP operations.

4 CLOUD-BASED SPARSE TENSOR
FACTORIZATION

In this section, we introduce Cloud-based Sparse Tensor Factoriza-
tion (CSTF), which is a scalable algorithm for implementing ten-
sor decompositions on distributed platforms with the MapReduce
programming model using the Spark engine. CSTF optimizes ten-
sor computations, specifically MTTKRP, to eliminate the need for
tensor unfolding and to reduce the memory footprint of the im-
plementation; we call this algorithm CSTF-COO. We also propose
the CSTF-QCOO algorithm, which analyzes and exploits the de-
pendency and locality between a sequence of tensor operations
to enable efficient data reuse in distributed tensor factorizations.
The following elaborates both algorithms and provides details on
how the key-value storage paradigm is used in the spark engine to
implement the methods efficiently on distributed systems.

4.1 CSTF-COO

CSTF-COO implements the MTTKRP operation with the COO
storage format using the MapReduce programming model in Spark.
In tensor decomposition algorithms, matricization across all modes
of an N-order tensor requires N replications of the tensor to perform
each MTTKRP. Also, constructing the Khatri-Rao product of dense
matrices explicitly creates larger dense result matrices. CSTF-COO
provides an implementation that eliminates explicit computation
of these costly operations by fully exploiting the sparsity of the
tensor. The main contributions in the CSTF-COO algorithm are the
design of distributed data representations motivated from tensor
computations and in-memory caching to reuse intermediate results
in the MTTKRP. CSTF-COO uses the coordinate storage format
to store the sparse tensor and then defines key-value pairs and
operates on them to implement the MTTKRP operation.

In the COO storage format for a third-order tensor, each nonzero
entry is stored with indices i, j, and k for three modes and the
corresponding nonzero entries. In other words, COO stores a list of
tuples including indices and values to represent all elements of the
sparse tensor. Based on COO, a sparse tensor can be represented



ICPP 2018, August 13-16, 2018, Eugene, OR, USA

with an RDD where each element represents one nonzero entry.
With a tensor stored in the COO format, MTTKRP operations can
be performed as in Equations 2 and 3 derived from Equation 1. As
shown in Equation 3, based on the nonzero indices and values, a
row of B and a row of C are retrieved respectively and then their
Hadamard product is computed and scaled with a tensor entry to
update a row of M. This computation can be extended from 3-order
tensors to N-order tensors.

JK
MG, r) = > X(1)(i, 2)(C(z/], r)B(z%]. 1)) @

z=1

JK
MG, ) = )" X1)(i, 2)(C(z/J, ) * B(z%], 2))
z=1

k=K j=]
= X (i, j, k)(C(k,:) = B(j, :)) ®3)
k=1 j=1

Algorithm 2 CSTF-COO mode-1 MTTKRP for a 3-order tensor
Require: :
X e RIXJXK; A 3-order tensor
X(i, j, k): A nonzero element of X at position (i, j, k)
B: Factor matrix of second mode
C: Factor matrix of third mode
Ensure: :
M: The result matrix of MTTKRP
: M0
2: for X(i,j, k) € X do
32 M(i,:) « M(i,:) + X(i, J, k)[C(k,:) * B(j, )]
4: end for

Implementation workflow. Table 2 illustrates the workflow of
implementing MTTKRP on mode-1 (M = X;)(C © B)) in CSTF-
COO. The basic idea of MTTKRP for a 3rd-order tensor is to fix
two matrices and update the remaining matrix. For MTTKRP on
mode-1, matrices B and C are fixed and the result of MTTKRP,
M, is used to update matrix A. STAGE 1 in Table 2 shows trans-
formations of the RDD based on the dependency between matrix
C and the tensor X along mode-3 to perform the computation:
X(i,j, k) = C(k,:); STAGE 2 shows transformations of the RDD
based on the dependency between matrix B and tensor X along
mode-3 to perform the computation with the intermediate result
from STAGE 1: X(i, j, k) = C(k, :) = B(j, :). STAGE 3 of CSTF-COO
applies transformations to RDDs based on the dependency be-
tween the output matrix M; and the tensor X along mode-1 to
update the result matrix with intermediate results from STAGE-2:
M(i,:) = M(i,:) + X(i, j, k) = C(k, :) = B(j,:).

Caching. As shown in Algorithm 1, tensor factorization is per-
formed using the alternative least squares method (ALS). Factor
matrices A, B, and C are updated repeatedly in the ALS procedure
in each iteration until a stopping criterion is satisfied. Keeping
the tensor in memory can improve the performance significantly
since the tensor data is reused across iterations. RDDs in Spark
can be cached by specifying a storage strategy and the data for-
mats between intermediate stages of the DAG. Data may be cached
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in a serialized or raw format while choosing memory or disk as
the storage strategy [31]. Serialized formats convert the internal
objects into a stream of bytes which typically take up less space
compared to the raw Java or Scala object representation in memory.
While serialization takes less space, more CPU cycles are needed
to convert the data representation. Raw caching typically requires
more space but is faster at reading objects into memory when a
transformation must be performed. We cache the tensors using the
raw format since it leads to better performance benefits in iterative
tensor algorithms such as tensor factorizations mainly due to the
faster data accesses.

4.2 CSTF-QCOO

CSTF-QCOO improves upon CSTF-COO by reusing data between
MTTKRP operations to reduce the amount of shuffling required.
The proposed improvement is useful when the MTTKRP opera-
tion is used in a tensor factorization algorithm such as the CP-ALS
where multiple MTTKRP operations are computed in each itera-
tion and between iterations. One of the main issues of using the
CSTF-COO algorithm in CP-ALS is the communication required for
every MTTKRP operation because of the volume of data shuffled.
With CSTF-COO, every MTTKRP for an N-order tensor requires N
shuffle operations which reduces the performance of the algorithm.
Algorithm 3 demonstrates CP-ALS for an N-order tensor using the
queuing process.

Algorithm 3 CP-ALS for an N-way tensor with QCOO

Require: X € R¥¥ v A N" order sparse tensor
R: The rank of approximation
Ensure: CP decomposition [A;Aq, -+, An]

1 Ve Queue{ATA;,... . ATl An_q}
2. Z « Queue{Aq,...,Ap—1}

3: repeat

4 forn=1:Ndo

5 dequeue(V)

dequeue(2)

6: if n = 1 then

7: Ve« enqueue(AIT\]AN)

8: Z « enqueue(An)

9: else

10: V enqueue(AzilAn,l)

11: Z « enqueue(A,_1)
12: end if

13: Ve reduce(V, vy, vy — vy * V2)
14: 7 — reduce(Z,z1,z0 — z1 © z3)
15: An — X(mf‘lﬁ

16: Normalize the columns of A, and store the norms as A

17:  end for
18: until no improvement or maximum iterations reached
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Table 2: Workflow comparison between BIGtensor, CSTF-COO, and CSTF-QCOO on a 3rd-order mode-1 MTTKRP
M & X(1>(C O] B)

[ Stage | BIGtensor [ CSTF-COO [ CSTF-QCOO
Map (i, jo, X(1)(i; jo)) on [41, Map COO on k to get (k, (i, j, k, X(i, j, K))) | Join (k, (i, j, k, X(i, j, k),
1 and (k, r, C(k, r)) on k. Join C(k, 2), (k, (i, j, k, X(i. j, k)), C(k, =)) Queue(A(i, -), B(j, 3))) with C(k, ©)

Reduce: (i, jo, X(1)(is jo)C(k, 1))

Map (i, jo, bin(Xq)(i, jo)))
2 on (jo mod J) and (j, r, B(j, r)) on j

Reduce: (i, jo, bin(X(1)(i> jo))B(, 7)) Join

Map(k((i, j, kX (i, j, k)), C(k, :))) on j
to get (j(i, J, k, X(i, j, k)), C(k, 2))),

BG ), Uy (G, )i k, X(i, J, k), C(k, ), BUj, 2))

Map Add C(k, :) to the queue, dequeue A(i, :) from
the queue and move to the next key.

Emit

(i, (i, j, k, X(i, j, k)), Queue(B(j, :), C(k, 3)))

Map (i, jo, X(1)(i, jo)C(j, 7))-

and (i, j, bin(X)(i, j))B(j, r)) on i,
Reduce:

(i, jo, 2 X(y(i, jo)B(j, r)C(k, 1))
Update: sum up columns and emit M(i, r).

ReduceByKey:

Update:

Map: (j, (i, j, k, X(i, j, k), C(k, 1)),
B(j, :)) on i and do B(j, :) * C(k, :) = X(i, j, k).

on (i, B(j, :) * C(k, :) * X(i, j, k)).

M(i, :) with (B(j, :) * C(k, :) = X(i, j, k)).

MapValues: (i, (i, j, k, X(i, j, k)), Queue(B(j, :),
C(k, :))) reduce the queue to B(j, :) * C(k, :).
ReduceByKey: on (i, B(j, :) * C(k, :) * X(i, j, k))
Update:

M(i, :) with B(j, :) = C(k, :) * X(i, j, k))).

Table 3: Representation of Data as Spark RDDs

‘ Dataset ‘ Type ‘ Spark RDD abstract Element example ‘ Implementation ‘
X Sparse tensor RDD[Vector] (i,j,k, X (i, j, k)) COO
Xo Sparse tensor RDD[(Vector, Queue[Vector])] | ((i,j, k, X(i, j, k)), Queue(A(i, :), B(j,:), C(k, :))) QCOO0
A,B,C | Dense factor matrices IndexedRowMatrix (index, A(index, :)) COO, QCOO
Mode-1 Mode-2 Mode-3 we see that the Khatri-Rao product of D and C is used in the update
L . . o of both A in equation 4 and Bin equation 5. Furthermore, the
<i, (j, k)> B <i» (k. 1)> R 7fk’ (i i)> computation for N1 and N3 in Equations 4 and 6 can be omitted for
e — 77”77%‘_ Equations 5 and 6 by reusing the intermediate results.
As shown in Algorithm 2, for each nonzero X(i, j, k) at (i, j, k),
A B c B c A c A B MTTKRP along mode-1 is performed as the j—th row of matrix B
— - and the k—row of matrix C are retrieved based on indices j and k.

Figure 1: The data reuse pattern among three MTTKRP op-
erations along different modes in CP decomposition. The
color blue represents an index and row of the matrix that
has to be updated. The color red shows the rows of factor
matrices which are fixed and are used to perform the MT-
TKRP operation. A line with an arrow marks the reuse flow
from one MTTKRP to another.

A« X;)(DOCoB)DD*C'C+BTB) (@)
N——— e
M, N;
B — X;(DOCOA)D'D*CTC+ATA) (5)
N——— N————
M; N
C—X3DoBoA)D D+B BxATA) (6)
N—— N———
Mz NZ
D« X;(CoBoA)CTC*BB+ATA)'I (7)
N—— N————
M, N,

In subsequent MTTKRP operations in CP-ALS there is a reuse of
factor matrices as shown in Equations 4, 5, 6, and 7. For example,

Their Hadamard product is scaled with the tensor entry at (i, j, k)
to update the i—th row of matrix A. When performing the MTTKRP
along mode-2, the k-th row of C and the i-th row of A are retrieved
to update the j—th row of matrix B. Therefore, between mode-1
MTTKRP and mode-2 MTTKRP, the k—th row of the matrix C can be
reused directly (marked by the arrow in Figure 1). The i—th row of
A is updated during the mode-1 MTTKRP computation and remains
in the same partition without introducing more communication
for the computations in the mode-2 MTTKRP. Likewise, data reuse
exists between mode-2 and mode-3 MTTKRPs as well as mode-3
and mode-1 MTTKRPs in the next iteration as shown via the arrows
in Figure 1.

Implementation workflow: Algorithm 3 describes how the
CSTF-QCOO algorithm is implemented. Between consecutive MT-
TKRP operations, the matrices used to calculate V and Z are all
the same except for one matrix. The implementation of CP-ALS
benefits from this data reuse in Spark to reduce the number of
shuffle operations. CSTF-QCOO utilizes the same storage format
as the CSTF-COO algorithm. By using the COO format for the
implementation it is able to take full advantage of the sparsity of
the tensor in the same way that CSTF-COO does. The first step of
the CSTF-QCOO algorithm creates the queues V and Z in lines 1
and 2 of Algorithm 3 and enqueues each factor matrix for the first
MTTKRP. The resulting RDD is in the form Xg, shown in Table
3. Afterwards, STAGE 1 of CSTF-QCOO in Table 2 is applied. The
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data representation for Stage 1 is similar to the COO format except
that a key-value scheme is applied as shown in Table 2 and instead
of a single vector a queue is used.

After performing the join transformation in STAGE 1, a map
transformation is applied to the RDD to switch to the right key
shown in STAGE 2 of CSTF-QCOO in Table 2. During the same map
operation, the joined vector is added to the queue and a dequeue op-
eration is performed which drops the oldest vector from the queue.
The resulting RDD from STAGE 2 can then be used to perform
the first join operation for the next MTTKRP. After STAGE 2, the
resulting RDD has its values mapped. The map function reduces
the queue by performing an element-wise multiplication with each
row vector and finally multiplying it by the tensor value. The en-
tire RDD is then transformed via ReduceByKey in order to add all
vectors which correspond to the same row of the matrix. This step
is shown in STAGE 3 in Table 2. This entire operation corresponds
to line 14 in Algorithm 3.

Caching. The queue of the RDD is updated for each MTTKRP,
thus, no more than two operations are performed on the same
RDD. Because RDDs are immutable many new RDDs are created
throughout the CP-ALS algorithm. Each tensor RDD that is used
before a join in STAGE 1 of Table 2 is cached to memory. The RDD
from the previous MTTKRP iteration is removed from the cache
by explicitly asking Spark to unpersist the old RDD. CSTF-QCOO
also exploits the reuse of data related to computations of the gram
matrices from one MTTKRP update to the next. An entire update
of a matrix row consists of an MTTKRP operation followed by
the psuedo-inverse of the multiplication of all but one of the gram
matrices. Because the matricized modes of the tensor are large and
distributed, the gram matrix for each factor is only computed once
per CP-ALS iteration. By computing the gram matrix only once
per iteration in CSTF-QCOO, the algorithm eliminates the need to
perform extra reduce operations.

4.3 Comparing the CSTF Workflow to
BIGtensor

In the following we first elaborate the workflow in BIGtensor and
then compare it to the CSTF workflow. As shown in Table 2, to
perform a mode-1 MTTKRP operation the tensor data is matricized
in mode-1 at STAGE-1 of the BIGtensor workflow. It is then joined
with the factor matrix C along mode-3. Both the tensor and the
factor matrix C are shuffled between nodes which leads to data
communication. In STAGE-2, the bin function bin() is used to pre-
serve the sparsity of the tensor X, which keeps the nonzero indices
of the mode-1 matricized tensor without storing the nonzero val-
ues. Then the tensor and factor matrix B are joined along mode-2.
In STAGE-3, BIGtensor combines the results from STAGE-1 and
STAGE-2 using the Hadamard product and adds each row to obtain
the final result. In this stage, double the number of tensor nonzeros
are shuffled. The workflow of BIGtensor from STAGE-1 to STAGE-3
is based on matricization of the tensor, however, CSTF uses key-
values to directly operate on nonzeros. Also, CSTF-QCOO utilizes
a queue strategy in MTTKRP operations to look for data reuse be-
tween MTTKRP operations while BIGtensor optimizes for a single
MTTKRP. Finally, at STAGE-2 of BIGtensor, the bin() function is
used to preserve the sparsity of the tensor and to execute STAGE-1
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and STAGE-2 simultaneously. The bin() function is an expensive
operation and requires a full pass over the tensor data.

5 COMPLEXITY ANALYSIS

In this section, we analyze the complexity of the MTTKRP im-
plementation in BIGtensor, CSTF-COOQ, and CSTF-QCOO demon-
strated in Table 4. nnz represents the number of nonzeros in the
sparse tensor, R is the rank of the tensor decomposition, and flops
represents the number of floating point operations. Intermediate
data is the size of data stored to complete a single MTTKRP. Shuffles
represents the number of shuffle operations caused by an MTTKRP
operation.

BIGtensor. At STAGE-1 of Table 2, the amount of data commu-
nicated is nnz X R to join tensor X(;) with matrix C with one shuffle.
At STAGE-2 in Table 2, the communicated data is also nnz X R to
join tensor bin(X(;)) with matrix B in one shuffle. STAGE-3 com-
bines the intermediate result from STAGE-1 and STAGE-2 with two
shuffles. In total, BIGtensor performs four shuffles for one MTTKRP
operation. The total amount of communicated data is 4 X nnz X R
(nnz is the number of nonzeros of the tensor X). For intermediate
data BIGtensor uses the tensor and one column from the factor
matrix B or C for computations at each task. The intermediate data
size is max(J + nnz, K + nnz). BIGtensor requires 5 X nnz X R to
perform one MTTKRP, including 3 X nnz X R for 3 Hadamard prod-
ucts at each STAGE and 2 X nnz X R for the final multiplication at
STAGE-3. Performance analysis of BIGtensor’s MTTKRP algorithm
is provided in more detail in [11].

CSTF-COO. As shown in Table 4, CSTF-COO requires 3nnz X R
flops to perform X;)(C ®B). This includes nnz X R flops to compute
X(i,j,k)C(k,:) in STAGE 1 and nnz X R to compute X(i, j, k)C(k, :
) % B(j,:) in STAGE 2. Then finally another nnz X R to perform
the ReduceByKey operation in STAGE 3. Every nonzero entry is
associated with vector of size R related to a tensor entry. Thus, the
intermediate data is nnz X R. The size of the tensor entry itself is
not included because these values must be stored with each record.
Three shuffle operations are required for a 3rd order tensor. There
will be two joins and one ReduceByKey which is shown in table 2.

A N-order tensor will require up to N shuffles for N MTTKRP
operations in CSTF-COO because a join must be performed for
every dimension of the tensor except for one. The join is followed
by a ReduceByKey which requires a shuffle operation. For an entire
iteration of CP decomposition, N 2 data shuffles with intermediate
data of size nnz X R occur. Thus, the maximum amount of data
communicated during shuffles for a single CP iteration is N2 x
nnz X R. Since the RDD size does not depend on the tensor order,
the intermediate data remains the same (nnz X R).

CSTF-QCOO: The required number of flops for CSTF-QCOO
is the same as CSTF-COO because both algorithms perform the
same number of vector operations. For a 3rd-order tensor up to 2
vectors are required for each tensor entry. Thus, the intermediate
data is 2nnz X R. However, only a join operation is required for each
MTTKRP. The total shuffles counting the final reduceByKey is 2
while the amount of data required to perform the second shuffle is
less than the intermediate data size shown in Table 4 and is only
nnz X R. In the CP decomposition algorithm with CSTF-QCOO, an
overhead of N shuffles exists before the first MTTKRP operation.
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Table 4: Cost comparison of BIGtensor, CSFT-COO, and
CSTF-QCOO for 3rd-order mode-1 MTTKRP.

Algorithm Flops Intermediate Data  Shuffles
BIGtensor  5nnz X R max(J + nnz, K + nnz) 4
CSTF-COO  3nnz X R nnz X R 3

CSTF-QCOO  3nnz xR 2nnz X R 2

This overhead occurs because the first N initial vectors must be
joined and added to the queue of each record. The queue holds
a vector for each dimension of the tensor leading to an increase
in the intermediate data. The intermediate data size is (N — 1) X
nnz X R where N is the dimension of the tensor. For a single CP
iteration, the maximum communication cost is N X (N —1)Xnnz xR
for join operations. While this leads to a small decrease in the
overall communication costs compared to CSTF-COO, for real world
tensors of orders of 3, 4, or 5, CSTF-QCOO reduces communication
costs up to 33%, 25%, and 20% respectively.

6 EXPERIMENTS

This section presents the implementation results for the CSTF-COO
and CSTF-QCOO algorithms. The performance of the algorithms
are compared to the state-of-the-art framework BIGtensor and
demonstrated for multidimensional tensors.

6.1 Experimental Setup

The experiments are ran on the Comet cluster provided by the
XSEDE [26] project in which each node is equipped with an Intel
Xeon E5-2680v3 processor (24 cores per node with clock speed of
2.5GHz), a 128GB RAM, and 320GB of SSD local scratch space. The
cluster runs Spark v1.5.2 and Hadoop 2.6.0, and consists of a driver
node and up to 32 worker nodes. All the experiments are performed
in double precision. We implement the CSTF algorithms on Spark
written in Scala.

6.2 Datasets

Datasets used for the experiments vary in density and size. They
are standard datasets generated from real applications obtained
from FROSTT [22] except for the synthetically generated synt3d.
Nelll comes from the Never Ending Language Learning (NELL)
project [3]. The nelll tensor represents noun-verb-noun triplets.
Delicious4d is a user-item-tag-date tensor crawled from tagging
systems [7], where date is at the granularity of day. The 3rd-order
tensor delicious3d is the same data with dates removed. The synt3d
is a synthetically generated random 3rd-order tensor. The detailed
configurations of these datasets are shown in Table 5.

6.3 Reference Algorithms

To evaluate the performance of the CSTF algorithms on the 3rd-
order CP decomposition algorithm we use BIGtensor [19], a recent
large-scale tensor mining library which runs on Hadoop. BIGtensor
supports various tensor operations and factorizations including the
3rd-order CP routine. The BIGtensor library uses the implemen-
tation for the distributed CP algorithm from GigaTensor [11]. To
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Table 5: Summary of datasets.

Dataset Order | Max mode size | nnz | Density
dellicious3d 3 17.3M 140M | 6.5e — 12
nelll 3 25.5M 144M | 9.3e — 13
synt3d 3 15M 200M | 5.3e — 12
flickr 4 28M 112M | 1.1e — 14
delicious4d 4 17.3M 140M | 4.3e — 15

provide a fair and comprehensive comparison, we execute all the
three algorithms, BIGtensor-CP, CSTF-COO, and CSTF-QCOO, for
20 iterations on the same cluster with the Rank of tensor factor-
ization fixed to 2. The worker nodes are from 4 to 32 for all three
algorithms on the datasets (nell1, delicious3d, and synt3d). We report
the average execution time for a CP-ALS iteration of the three algo-
rithms. To evaluate the performance provided by CSTF-QCOO for
4th-order CP decompositions, CSTF-COO is chosen as the baseline
for comparison because BIGtensor only supports 3rd-order tensors.

6.4 Performance Results and Analysis

CSTF versus BIGtensor on 3rd-order tensors. Figure 2 com-
pares the performance of CSTF-COO and CSTF-QCOO to BIGten-
sor. Both the CSTF-COO and CSTF-QCOO algorithms show perfor-
mance improvements over the BIGtensor library by a large margin.
For delicious3d, CSTF-COO achieves 3.0x to 6.9X speedup while
CSTF-QCOO achieves 3.8x to 6.5x speedup as shown in Figure
2(a). For nell1, CSTF-COO achieves 2.6X to 4.7x speedup while
CSTF-QCOO achieves 3.9% to 5.2X speedup as shown in Figure
2(b). Figure 2(c) shows CSTF-COO achieves 2.2x to 5.8X speedup
while CSTF-QCOO achieves 3.7X to 5.2X speedup.

Unfolding or the matricization operations on the input tensor in
BIGtensor increases communication overheads on a distributed plat-
form. The bin() function used in BIGtensor also increases commu-
nication. However, the implementations of CSTF-COO and CSTF-
QCOO avoid expensive and unnecessary unfolding operations and
explicit generation of the Khatri-Rao product by fully exploiting
the sparsity of tensor. Also, the in-memory caching provided by
Spark enables faster data access throughout the tensor factorization
in CSTF. Through this combination of algorithm improvements the
CSTF algorithms are able to achieve better performance compared
to the reference implementation—BIGtensor. However, as shown
in Figure 2 the scalability of the CSTF algorithms is not better than
BIGtensor on 4 to 32 nodes because of the overhead of generating
more intermediate data as shown in Table 4.

CSTF-COO versus CSTF-QCOO for 3rd-order and 4th-order
tensors. When comparing the performance across different num-
ber of nodes, the running time of CSTF-QCOO and CSTF-COO are
relatively close for small clusters but the gap widens as the num-
ber of nodes and the tensor dimension increases. QCOO performs
around 1.1X worse than CSTF-COO for a 4-node cluster on the
delicious3d tensor but then improves as more nodes are added. As
shown in Figure 2(a), CSTF-QCOO improves the performance from
0.92% to 1.24x on delicious3d. For nelll, the performance improve-
ments range from 1.1X to 1.49X as shown in Figure 2(b). For synt3d,
CSTF-QCOO achieves 0.90% to 1.7 speedup over COO as shown
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Figure 2: Runtime for CSTF-COO, CSTF-QCOO, and BIGtensor CP-ALS on 3rd-order tensors.

in Figure 2(c). The performance gains range from 0.98X to 1.27X
for flickr as shown in Figure 3(b). On delicious4d. the speedups
range from 1.06X to 1.67X as shown in Figure 3(a). The difference
between CSTF-COO and CSTF-QCOO performances are because
of the reuse provided by the Queue strategy.

6.5 Communication Cost

Data communication is a major performance bottleneck in large-
scale tensor decomposition algorithms. In the following section,
we discuss our metrics for measuring this communication and
show that CSTF reduces data communication through data-reuse,
caching, and an overall reduced number of transformations. We
use Spark’s [30] built-in metrics collection service to collect the
data on shuffle communication costs while running CSTF-COO
and CSTF-QCOO. We measure the number remote and local bytes
read. Remote bytes are the bytes read from all remote processors
across all shuffle phases in Spark. Lower amounts of remote bytes
are indicative of reduced network traffic. Local bytes represent the
total number of bytes read from a partition without communication
during the Spark shuffle phases for all processors. Figure 4 displays
the information that was collected for a single CP-ALS iteration.

As shown in Figure 4(a), CSTF-QCOO reads a total of 20.8 GB
remote data from other nodes while CSTF-COO reads 31.9 GB
remote data for the delicious3d tensor. CSTF-QCOO reduces the
shuffle cost by 35% compared to CSTF-COO. Figure 4(a) also shows
that CSTF-QCOO reads a total of 23.8 GB data remotely from other
nodes while CSTF-COO reads 34.4 GB remote data for the flickr
tensor. CSTF-QCOO reduces the shuffle cost by 31% compared to
CSTF-COO. These values show that our QCOO algorithm is able to
decrease the overall network communication overhead.

The experiments demonstrating the local data read are ran on
8 nodes. As shown in Figure 4(b), CSTF-COO reads 4.68 GB from
local processors while CSTF-QCOO consumes 3.0 GB for the deli-
cious3d tensor. CSTF-QCOO reduces the local data read by 36.0%
for delicious-3d. Figure 4(b) also shows that CSTF-COO reads 5.13
GB from the file-system while CSTF-QCOO uses 3.34 GB for the
flickr tensor. CSTF-QCOO reduces the local communication cost
by 35.0% for flickr.

The saved shuffle cost in experiments fits well with the theo-
retical analysis demonstrated in Section 5. Because of data reuse

provided by CSTF-QCOO, less transformations (e.g., map, filter,
and join) are performed for a sequence of MTTKRP operations
which can be seen in Table 2. The reduction in transformations is
reflected in 4(b). If there are less transformations being performed
on each RDD then there should also be less overall bytes read
from local partitions. By reducing local and global communication,
the performance of tensor decomposition algorithms is enhanced
significantly.

6.6 Mode Behavior

For MTTKRP operations along different modes for the nelll tensor,
as shown in Figure 5(a), CSTF-COO achieves 4.0X to 6.1X speedup
over BIGtensor; CSTF-QCOO achieves 4.3X to 6.3X speedup over
BIGtensor. For MTTKRP operations along different modes for de-
licious3d, shown in Figure 5(b), CSTF-COO achieves 5.6X to 6.3X
speedup over BIGtensor; CSTF-QCOO achieves 4.3X to 9.5X speedup
over BlGtensor.

Figure 5 shows that the CSTF algorithm delivers relatively sim-
ilar performance benefits for all modes because it partitions and
parallelizes the nonzeros of the tensor. This is specifically more evi-
dent for delicious which is an "oddly" shaped tensor; CSTF-QCOO
is able to achieve up to 9.5X speedup. As shown in 5, the runtime for
MTTKRP along mode-1 in CSTF-QCOO exceeds CSTF-COO by 30%
for nell1 and 35% for delicious3d tensor. This extra overhead comes
from initialization of the Queue data structure in the CSTF-QCOO
algorithm.

7 CONCLUSION

In this paper, we propose CSTF, which is composed of two highly ef-
ficient distributed algorithms for the sparse and higher-order tensor
CP decomposition on distributed platforms. CSTF-COO is proposed
to decompose large-scale sparse tensors stored in the COO for-
mat based on the MapReduce paradigm using the Spark engine.
We also present CSTF-QCOO which introduces a queuing strat-
egy to reduce data communication in the CP-ALS algorithm. The
experiments show that our proposed CSTF-QCOO algorithm can
outperform BIGtensor (the state-of-the-art tensor decomposition
tool based on Hadoop) on tested 3rd-order sparse tensor datasets
with a 3.9% to 6.5 speedup. For higher-order sparse tensors across



CSTF: Large-Scale Sparse Tensor Factorizations on Distributed Platforms ICPP 2018, August 13-16, 2018, Eugene, OR, USA

650 @ coo 650 ¢ coo
600
B QCoo B QCo0
. Q __600 Q
0 550 0
@ 500 qE, 550
= 450 S
;‘ § 500
400
& 450
350
300 400
a 8 16 32 4 8 16 32
Number of Nodes Number of Nodes
(a) Runtime on delicious4d (b) Runtime on flickr
Figure 3: Runtime for CSTF-COO and CSTF-QCOO for CP-ALS on 4th-order tensors.
8
0 50/ EEEOther | EmEOther
o EERMTTKRP-1 o 7| EEEMTTKRP-1
< | EEMTTKRP-2 (O | EEEMTTKRP-2
EMTTKRP-3 < | EEMTTKRP-3
T 40| EEMTTKRP-4 5 ©| EEMTTKRP-4
()] ©
o coo o5 00
1 30 o
9 w4
S g
[aa] >3
© 20 a
© 10 ,—3 2
5 81
4
0 0

delicious-3d

flickr

delicious-3d flickr

(a) Shuffle data read from remote processors (b) Shuffle data read from local processors

Figure 4: Remote and local data read in CSTF (COO and QCOO) for delicious3d and flickr on an 8 nodes cluster.

900 900
EECO0
800 800] EEmQCOO0
IEBIGTensor EBIGTensor
700 700
“ 600 “ 600
@ 500 @ 500
£ £
-lg 400 -lg 400
o 300 P 300
200 200
100 100
0
mode 1 mode 2 mode 3 mode 1 mode 2 mode 3
(a) MTTKRP of different modes on the nell-1 tensor (b) MTTKRP of different modes on the delicious3d tensor

Figure 5: MTTKRP runtimes of CSTF-COO, CSTF-QCOO, and BIGtensor across each tensor mode for 3-order CP-ALS on 4
nodes.



ICPP 2018, August 13-16, 2018, Eugene, OR, USA

all cluster sizes CSTF-QCOO achieves speedups of 0.98X to 1.7X
over CSTF-COO.
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